Use the marginal tax rate chart to answer the question.

Marginal Tax Rate Chart
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Tax Bracket } & Marginal Tax Rate \\
\hline\[tex]$0-\$[/tex]10,275 & 10\% \\
\hline\[tex]$10,276-\$[/tex]41,175 & 12\% \\
\hline\[tex]$41,176-\$[/tex]89,075 & 22\% \\
\hline\[tex]$89,076-\$[/tex]170,050 & 24\% \\
\hline\[tex]$170,051-\$[/tex]215,950 & 32\% \\
\hline\[tex]$215,951-\$[/tex]539,900 & 35\% \\
\hline\[tex]$\ \textgreater \ 539,901 & 37\% \\
\hline
\end{tabular}

Determine the effective tax rate for a taxable income of \$[/tex]75,400. Round the final answer to the nearest hundredth.

A. 10.05\%
B. 16.27\%
C. 22.00\%
D. 24.90\%



Answer :

To determine the effective tax rate for a taxable income of [tex]$75,400, we break down the income according to the marginal tax rate chart and calculate the tax owed for each portion. 1. Income from $[/tex]0 to [tex]$10,275 at 10%: \[ \$[/tex]10,275 \times 0.10 = \[tex]$1,027.50 \] 2. Income from $[/tex]10,276 to [tex]$41,175 at 12%: \[ (\$[/tex]41,175 - \[tex]$10,275) = \$[/tex]30,900 \\
\[tex]$30,900 \times 0.12 = \$[/tex]3,708
\]

3. Income from [tex]$41,176 to $[/tex]75,400 at 22%:
[tex]\[ (\$75,400 - \$41,175) = \$34,225 \\ \$34,225 \times 0.22 = \$7,529.50 \][/tex]

To find the total tax, we sum the tax calculated for each bracket:

[tex]\[ \$1,027.50 + \$3,708 + \$7,529.50 = \$12,265 \][/tex]

Now we calculate the effective tax rate, which is the total tax divided by the total income:

[tex]\[ \text{Effective Tax Rate} = \left(\frac{\$12,265}{\$75,400}\right) \times 100 \][/tex]

[tex]\[ \text{Effective Tax Rate} \approx 16.27 \% \][/tex]

Since the closest available option that matches our result is [tex]\(16.27\%\)[/tex], the correct answer is:

[tex]\[ \boxed{16.27 \%} \][/tex]