Use the table to create ordered pairs.

\begin{tabular}{|c|l|c|}
\hline
[tex]$n$[/tex] & [tex]$f(n)=6n-1$[/tex] & [tex]$f(n)$[/tex] \\
\hline
1 & [tex]$f(1)=6 \times 1-1$[/tex] & 5 \\
\hline
2 & [tex]$f(2)=6 \times 2-1$[/tex] & 11 \\
\hline
3 & [tex]$f(3)=6 \times 3-1$[/tex] & 17 \\
\hline
4 & [tex]$f(4)=6 \times 4-1$[/tex] & 23 \\
\hline
\end{tabular}



Answer :

Sure! Let's go through the table step-by-step and create the ordered pairs according to the given data.

We start with the function [tex]\( f(n) = 6n - 1 \)[/tex] and the values of [tex]\( n \)[/tex] provided.

1. When [tex]\( n = 1 \)[/tex]:
[tex]\[ f(1) = 6 \times 1 - 1 = 6 - 1 = 5 \][/tex]
So, the ordered pair is [tex]\( (1, 5) \)[/tex].

2. When [tex]\( n = 2 \)[/tex]:
[tex]\[ f(2) = 6 \times 2 - 1 = 12 - 1 = 11 \][/tex]
So, the ordered pair is [tex]\( (2, 11) \)[/tex].

3. When [tex]\( n = 3 \)[/tex]:
[tex]\[ f(3) = 6 \times 3 - 1 = 18 - 1 = 17 \][/tex]
So, the ordered pair is [tex]\( (3, 17) \)[/tex].

4. When [tex]\( n = 4 \)[/tex]:
[tex]\[ f(4) = 6 \times 4 - 1 = 24 - 1 = 23 \][/tex]
So, the ordered pair is [tex]\( (4, 23) \)[/tex].

Thus, using the given values of [tex]\( n \)[/tex] and the function [tex]\( f(n) \)[/tex], we can create the following ordered pairs:

[tex]\[ \boxed{(1, 5), (2, 11), (3, 17), (4, 23)} \][/tex]

These ordered pairs represent the inputs ([tex]\( n \)[/tex]) and their corresponding outputs ([tex]\( f(n) \)[/tex]) for the function [tex]\( f(n) = 6n - 1 \)[/tex].