Use the substitution [tex]u=2x^2+3x[/tex] to evaluate the indefinite integral below.

[tex]\[
\int (4x+3) \sqrt{2x^2+3x} \, dx
\][/tex]

Write the integrand in terms of [tex]u[/tex].

[tex]\[
\int (4x+3) \sqrt{2x^2+3x} \, dx = \int (\square) \, du
\][/tex]



Answer :

Sure, let's go through the indefinite integral step by step using the substitution [tex]\( u = 2x^2 + 3x \)[/tex].

First, we substitute [tex]\( u = 2x^2 + 3x \)[/tex], which means we need to compute the differential [tex]\( du \)[/tex] in terms of [tex]\( dx \)[/tex].

1. Find [tex]\( du \)[/tex] in terms of [tex]\( dx \)[/tex]:

Differentiate [tex]\( u = 2x^2 + 3x \)[/tex] with respect to [tex]\( x \)[/tex]:

[tex]\[ \frac{du}{dx} = 4x + 3 \][/tex]

Hence,

[tex]\[ du = (4x + 3) \, dx \][/tex]

Solving for [tex]\( dx \)[/tex], we get:

[tex]\[ dx = \frac{du}{4x + 3} \][/tex]

2. Substitute [tex]\( u \)[/tex] and [tex]\( dx \)[/tex] back into the original integral:

The given integral is:

[tex]\[ \int (4x + 3) \sqrt{2x^2 + 3x} \, dx \][/tex]

Substitute [tex]\( u = 2x^2 + 3x \)[/tex] and [tex]\( dx = \frac{du}{4x + 3} \)[/tex]:

[tex]\[ \int (4x + 3) \sqrt{u} \, \frac{du}{4x + 3} \][/tex]

Notice the [tex]\( 4x + 3 \)[/tex] terms will cancel each other out:

[tex]\[ \int \sqrt{u} \, du \][/tex]

3. Write the integrand in terms of [tex]\( u \)[/tex]:

Finally, the rewritten integral in terms of [tex]\( u \)[/tex] is:

[tex]\[ \int (4x + 3) \sqrt{2x^2 + 3x} \, dx = \int \sqrt{u} \, du \][/tex]

So, when using the substitution [tex]\( u = 2x^2 + 3x \)[/tex], the integral [tex]\(\int(4x+3) \sqrt{2x^2+3x} \, dx\)[/tex] transforms into:

[tex]\[ \int \sqrt{u} \, du \][/tex]

Now, you can evaluate the integral [tex]\(\int \sqrt{u} \, du \)[/tex] to find the final result.