Solve the exponential equation. Write the exact solution and the approximation to four decimal places. Type "DNE" if there is no solution.

[tex]\[ 10^{5x + 8} = 9 \][/tex]

1) Exact solution: [tex]\(\square\)[/tex]

2) Approximation: [tex]\(\square\)[/tex]



Answer :

To solve the exponential equation [tex]\(10^{5x + 8} = 9\)[/tex], we can follow these steps:

1. Take the logarithm of both sides of the equation.

[tex]\[ \log(10^{5x + 8}) = \log(9) \][/tex]

2. Apply the properties of logarithms.

[tex]\[ (5x + 8) \cdot \log(10) = \log(9) \][/tex]

3. Since [tex]\(\log(10) = 1\)[/tex], we simplify the equation:

[tex]\[ 5x + 8 = \log(9) \][/tex]

4. Isolate [tex]\(5x\)[/tex] by subtracting 8 from both sides:

[tex]\[ 5x = \log(9) - 8 \][/tex]

5. Solve for [tex]\(x\)[/tex] by dividing both sides by 5:

[tex]\[ x = \frac{\log(9) - 8}{5} \][/tex]

This represents the exact solution:

[tex]\[ x = \frac{\log(9) - 8}{5} \][/tex]

Now, let's calculate the approximate value:

6. Compute the numerical value of [tex]\(\log(9)\)[/tex].

[tex]\[ \log(9) \approx 0.9542425094393249 \][/tex]

7. Substitute this value back into the equation for [tex]\( x \)[/tex]:

[tex]\[ x \approx \frac{0.9542425094393249 - 8}{5} \][/tex]

8. Simplify the expression:

[tex]\[ x \approx \frac{-7.0457574905606751}{5} \][/tex]

[tex]\[ x \approx -1.409151498112135 \][/tex]

9. Round the approximate value to 4 decimal places:

[tex]\[ x \approx -1.4092 \][/tex]

Summary of the solutions:
1. Exact solution:

[tex]\[ x = \frac{\log(9) - 8}{5} \][/tex]

2. Approximation to 4 decimal places:

[tex]\[ x \approx -1.4092 \][/tex]