If the measure of angle [tex]T[/tex] is [tex]\frac{49 \pi}{60}[/tex] radians, what is the measure of angle [tex]T[/tex] in degrees?

[tex]\square[/tex]



Answer :

To convert the measure of angle [tex]\( T \)[/tex] from radians to degrees, we use the conversion factor that [tex]\( 180 \)[/tex] degrees is equal to [tex]\( \pi \)[/tex] radians.

Given that the measure of angle [tex]\( T \)[/tex] is [tex]\( \frac{49 \pi}{60} \)[/tex] radians, we need to determine its equivalent in degrees. Here are the steps to find the solution:

1. Write down the formula for converting radians to degrees:
[tex]\[ \text{Degrees} = \text{Radians} \times \frac{180}{\pi} \][/tex]

2. Substitute the given angle [tex]\( T \)[/tex] into the formula:
[tex]\[ \text{Degrees} = \left( \frac{49 \pi}{60} \right) \times \frac{180}{\pi} \][/tex]

3. Simplify the equation by canceling out [tex]\( \pi \)[/tex] from the numerator and the denominator:
[tex]\[ \text{Degrees} = \frac{49 \times 180}{60} \][/tex]

4. Calculate the multiplication and division:
[tex]\[ \text{Degrees} = \frac{8820}{60} \][/tex]

5. Perform the division:
[tex]\[ \text{Degrees} = 147 \][/tex]

Therefore, the measure of angle [tex]\( T \)[/tex] in degrees is:
[tex]\[ \boxed{147} \][/tex]