Select the correct answer.

Assuming no denominator equals zero, which expression is equivalent to the given expression?

[tex]\[ \frac{\frac{1}{a^2 - 2a - 8}}{\frac{a-6}{a-4}} \][/tex]

A. [tex]\(\frac{1}{(a+2)(a-5)}\)[/tex]

B. [tex]\(\frac{a+2}{a-5}\)[/tex]

C. [tex]\(\frac{a-5}{(a-4)^2}\)[/tex]

D. [tex]\(\frac{a-4}{a+2}\)[/tex]



Answer :

Sure, let's go through the solution step-by-step to determine which expression is equivalent to the given expression [tex]\(\frac{\frac{1}{a^2 - 2a - 8}}{\frac{a - 6}{a - 4}}\)[/tex].

Step 1: Rewrite the expression by multiplying by the reciprocal of the denominator.
[tex]\[ \frac{\frac{1}{a^2 - 2a - 8}}{\frac{a - 6}{a - 4}} = \frac{1}{a^2 - 2a - 8} \times \frac{a - 4}{a - 6} \][/tex]

Step 2: Factor the quadratic expression in the denominator of the first fraction.
[tex]\[ a^2 - 2a - 8 = (a - 4)(a + 2) \][/tex]

Step 3: Substitute the factored form into the expression.
[tex]\[ \frac{1}{(a - 4)(a + 2)} \times \frac{a - 4}{a - 6} \][/tex]

Step 4: Cancel out the common factor [tex]\((a - 4)\)[/tex] from the numerator and the denominator.
[tex]\[ \frac{1}{(a + 2)} \times \frac{1}{a - 6} = \frac{1}{(a + 2)(a - 6)} \][/tex]

Now we have the simplified equivalent expression:
[tex]\[ \frac{1}{(a + 2)(a - 6)} \][/tex]

Based on the choices provided, the correct expression that matches our simplified result is:
[tex]\[ \boxed{\frac{1}{(a + 2)(a - 6)}} \][/tex]

Hence, the correct answer is the first choice:
[tex]\[ \frac{1}{(a + 2)(a - 6)} \][/tex]