Which algebraic expression is a trinomial?

A. [tex]x^3 + x^2 - \sqrt{x}[/tex]
B. [tex]2x^3 - x^2[/tex]
C. [tex]4x^3 + x^2 - \frac{1}{x}[/tex]
D. [tex]x^6 - x + \sqrt{6}[/tex]



Answer :

A trinomial is an algebraic expression composed of exactly three terms. Let's analyze each of the given expressions to determine which one qualifies as a trinomial.

1. [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
- This expression includes three distinct terms: [tex]\( x^3 \)[/tex], [tex]\( x^2 \)[/tex], and [tex]\( -\sqrt{x} \)[/tex].
- Therefore, it has 3 terms.

2. [tex]\( 2x^3 - x^2 \)[/tex]
- This expression includes only two distinct terms: [tex]\( 2x^3 \)[/tex] and [tex]\( -x^2 \)[/tex].
- Therefore, it has 2 terms.

3. [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
- This expression includes three distinct terms: [tex]\( 4x^3 \)[/tex], [tex]\( x^2 \)[/tex], and [tex]\( -\frac{1}{x} \)[/tex].
- Therefore, it has 3 terms.

4. [tex]\( x^6 - x + \sqrt{6} \)[/tex]
- This expression includes three distinct terms: [tex]\( x^6 \)[/tex], [tex]\( -x \)[/tex], and [tex]\( \sqrt{6} \)[/tex].
- Therefore, it has 3 terms.

To summarize:

- [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]: 3 terms
- [tex]\( 2x^3 - x^2 \)[/tex]: 2 terms
- [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]: 3 terms
- [tex]\( x^6 - x + \sqrt{6} \)[/tex]: 3 terms

Expressions containing three terms (trinomials) here are:
- [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
- [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
- [tex]\( x^6 - x + \sqrt{6} \)[/tex]

So, the algebraic expressions that are trinomials are:
1. [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]
3. [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]
4. [tex]\( x^6 - x + \sqrt{6} \)[/tex]