Sumy is working in geometry class and is given figure [tex]\(ABCD\)[/tex] in the coordinate plane to reflect. The coordinates of point [tex]\(D\)[/tex] are [tex]\((a, b)\)[/tex] and she reflects the figure over the line [tex]\(y=x\)[/tex]. What are the coordinates of the image [tex]\(D'\)[/tex]?

A. [tex]\((a, -b)\)[/tex]

B. [tex]\((b, a)\)[/tex]

C. [tex]\((-a, b)\)[/tex]

D. [tex]\((-b, -a)\)[/tex]



Answer :

To solve this problem, we need to understand how coordinates change under reflection over the line [tex]\( y = x \)[/tex].

When a point [tex]\( (a, b) \)[/tex] is reflected over the line [tex]\( y = x \)[/tex], the coordinates of the reflected point are obtained by swapping the x-coordinate and y-coordinate of the original point.

Therefore, if the original point [tex]\( D \)[/tex] has coordinates [tex]\( (a, b) \)[/tex], after reflecting it over the line [tex]\( y = x \)[/tex], the new coordinates of the image will be [tex]\( (b, a) \)[/tex].

Given the options:
1. [tex]\((a, -b)\)[/tex]
2. [tex]\((b, a)\)[/tex]
3. [tex]\((-a, b)\)[/tex]
4. [tex]\((-b, -a)\)[/tex]

The correct coordinates of the image of point [tex]\( D \)[/tex] after the reflection over the line [tex]\( y = x \)[/tex] are [tex]\((b, a)\)[/tex].

Thus, the coordinates of the image of point [tex]\( D \)[/tex] are [tex]\( \boxed{(b, a)} \)[/tex].