A right pyramid with a square base has a base length of [tex]$x$[/tex] inches, and the height is two inches longer than the length of the base. Which expression represents the volume in terms of [tex]$x$[/tex]?

A. [tex]\frac{x^2(x+2)}{3}[/tex] cubic inches
B. [tex]\frac{x(x+2)}{3}[/tex] cubic inches
C. [tex]\frac{x^3}{3}+2[/tex] cubic inches
D. [tex]\frac{x^3+2}{3}[/tex] cubic inches



Answer :

Let's determine the volume of a right pyramid with a square base step-by-step.

1. Identify the given dimensions:
- The length of each side of the square base is [tex]\( x \)[/tex] inches.
- The height of the pyramid is [tex]\( 2 \)[/tex] inches longer than the base side length, which means the height is [tex]\( x + 2 \)[/tex] inches.

2. Determine the area of the square base:
The area of the base (which is a square) can be calculated using the formula for the area of a square:
[tex]\[ \text{Base Area} = x^2 \][/tex]

3. Recall the volume formula for a pyramid:
The volume [tex]\( V \)[/tex] of a pyramid with a square base is calculated using the formula:
[tex]\[ V = \frac{\text{Base Area} \times \text{Height}}{3} \][/tex]

4. Substitute the given dimensions into the formula:
- The base area is [tex]\( x^2 \)[/tex].
- The height is [tex]\( x + 2 \)[/tex].

So, substituting these values in, we get:
[tex]\[ V = \frac{x^2 \times (x + 2)}{3} \][/tex]

5. Simplify the expression:
The expression for the volume simplifies to:
[tex]\[ V = \frac{x^2 (x + 2)}{3} \][/tex]

Therefore, the correct expression that represents the volume of the right pyramid in terms of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{\frac{x^2 (x + 2)}{3} \text{ cubic inches}} \][/tex]