What is the domain of the function [tex]f(x)=\frac{x^2+1}{x-1}[/tex]?

A. [tex]\mathbb{R}[/tex]
B. [tex]\mathbb{R} \setminus \{0\}[/tex]
C. [tex]\mathbb{R} \setminus \{1\}[/tex]



Answer :

To determine the domain of the function [tex]\( f(x) = \frac{x^2 + 1}{x - 1} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is undefined. The function [tex]\( f(x) \)[/tex] becomes undefined when the denominator is zero because division by zero is not allowed in mathematics.

Let’s find the value of [tex]\( x \)[/tex] that makes the denominator zero:
[tex]\[ x - 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 1 \][/tex]

So, the function [tex]\( f(x) = \frac{x^2 + 1}{x - 1} \)[/tex] is undefined at [tex]\( x = 1 \)[/tex].

The domain of [tex]\( f(x) \)[/tex] is therefore all real numbers except [tex]\( x = 1 \)[/tex].

This can be written as:
[tex]\[ R - \{1\} \][/tex]

Thus, the correct answer is:
(iii) [tex]\( R - \{1\} \)[/tex]