Type the correct answer in each box. Spell all words correctly, and use numerals instead of words for numbers.

The formula for eccentricity, [tex]\( e \)[/tex], of an orbit is given below, where [tex]\( a \)[/tex] is the length of the semi-major axis and [tex]\( b \)[/tex] is the length of the major axis.
[tex]\[ e = \sqrt{1 - \frac{b^2}{a^2}} \][/tex]

Solve the formula for eccentricity for the length of the semi-major axis.

\begin{tabular}{|l|l|}
\hline
A & [tex]\( a = \frac{\sqrt{e^2 - 1}}{b} \)[/tex] \\
\hline
B & [tex]\( a = \frac{b}{\sqrt{e^2 - 1}} \)[/tex] \\
\hline
C & [tex]\( a = \frac{\sqrt{1 - e^2}}{b} \)[/tex] \\
\hline
D & [tex]\( a = \frac{b}{\sqrt{1 - e^2}} \)[/tex] \\
\hline
\end{tabular}

The correct equation for the length of the semi-major axis is equation [tex]\(\square\)[/tex].

When the length of the major axis is 4 inches and the eccentricity of the orbit is [tex]\(\frac{1}{2}\)[/tex], the length of the semi-major axis is [tex]\(\square\)[/tex] inches (round to the nearest hundredth).



Answer :

To solve the formula for the eccentricity [tex]\( e \)[/tex] of an orbit for the length of the semi-major axis [tex]\( a \)[/tex], we start with the given equation:
[tex]\[ e = \sqrt{1 - \frac{b^2}{a^2}} \][/tex]

First, square both sides to eliminate the square root:
[tex]\[ e^2 = 1 - \frac{b^2}{a^2} \][/tex]

Next, isolate the fraction by subtracting [tex]\( e^2 \)[/tex] from both sides:
[tex]\[ \frac{b^2}{a^2} = 1 - e^2 \][/tex]

Then, solve for [tex]\( a^2 \)[/tex] by rearranging the equation:
[tex]\[ a^2 = \frac{b^2}{1 - e^2} \][/tex]

Finally, take the square root of both sides to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{b}{\sqrt{1 - e^2}} \][/tex]

Thus, the correct equation for the length of the semi-major axis is equation [tex]\( D \)[/tex].

When the length of the major axis [tex]\( b \)[/tex] is 4 inches and the eccentricity [tex]\( e \)[/tex] is [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ a = \frac{4}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} \][/tex]

Calculate the eccentricity squared:
[tex]\[ e^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]

Substitute [tex]\( e^2 \)[/tex] into the equation:
[tex]\[ a = \frac{4}{\sqrt{1 - \frac{1}{4}}} = \frac{4}{\sqrt{\frac{3}{4}}} \][/tex]

Simplify the expression under the square root:
[tex]\[ a = \frac{4}{\frac{\sqrt{3}}{2}} = \frac{4 \times 2}{\sqrt{3}} = \frac{8}{\sqrt{3}} \][/tex]

Rationalize the denominator:
[tex]\[ a = \frac{8 \sqrt{3}}{3} \approx 4.62 \][/tex]

So, the length of the semi-major axis is approximately 4.62 inches.

### Final answers:
The correct equation for the length of the semi-major axis is equation [tex]\( \boxed{D} \)[/tex].

When the length of the major axis is 4 inches and the eccentricity of the orbit is [tex]\( \frac{1}{2} \)[/tex], the length of the semi-major axis is [tex]\( \boxed{4.62} \)[/tex] inches (rounded to the nearest hundredth).