Answer :

To solve the expression [tex]\(5^5 \div 5^{-6}\)[/tex], we need to use the properties of exponents. Specifically, the rule that states:

[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

This rule tells us that when we divide powers with the same base, we subtract the exponent of the denominator from the exponent of the numerator.

Given the expression [tex]\(5^5 \div 5^{-6}\)[/tex]:

1. Identify the base (which is 5).
2. Identify the exponents (5 for the numerator and -6 for the denominator).
3. Apply the exponent rule [tex]\(a^m / a^n = a^{m-n}\)[/tex].

So, we need to subtract the exponent in the denominator from the exponent in the numerator:

[tex]\[ 5^5 \div 5^{-6} = 5^{5 - (-6)} \][/tex]

Subtracting a negative exponent is the same as adding its positive counterpart:

[tex]\[ 5^{5 - (-6)} = 5^{5 + 6} \][/tex]

Now, add the exponents:

[tex]\[ 5^{5 + 6} = 5^{11} \][/tex]

Therefore, the value of [tex]\(5^5 \div 5^{-6}\)[/tex] is [tex]\(5^{11}\)[/tex].

Hence, the answer is:

c. [tex]\(5^{11}\)[/tex]