Answer :
To solve the expression [tex]\( x + x \left( x^x \right) \)[/tex] for [tex]\( x = 4 \)[/tex], we need to follow these steps:
Step 1: Calculate [tex]\( x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex]
- So, [tex]\( 4^4 = 4 \times 4 \times 4 \times 4 = 256 \)[/tex]
Step 2: Calculate [tex]\( x \times x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex] and we found that [tex]\( x^x = 256 \)[/tex]
- So, [tex]\( 4 \times 256 = 1024 \)[/tex]
Step 3: Calculate [tex]\( x + x \times x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex] and we found that [tex]\( x \times x^x = 1024 \)[/tex]
- So, [tex]\( 4 + 1024 = 1028 \)[/tex]
Thus, the value of [tex]\( x + x \left( x^x \right) \)[/tex] when [tex]\( x = 4 \)[/tex] is [tex]\(\boxed{1028}\)[/tex].
The correct answer is:
c. 1028
Step 1: Calculate [tex]\( x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex]
- So, [tex]\( 4^4 = 4 \times 4 \times 4 \times 4 = 256 \)[/tex]
Step 2: Calculate [tex]\( x \times x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex] and we found that [tex]\( x^x = 256 \)[/tex]
- So, [tex]\( 4 \times 256 = 1024 \)[/tex]
Step 3: Calculate [tex]\( x + x \times x^x \)[/tex]
- Here, [tex]\( x = 4 \)[/tex] and we found that [tex]\( x \times x^x = 1024 \)[/tex]
- So, [tex]\( 4 + 1024 = 1028 \)[/tex]
Thus, the value of [tex]\( x + x \left( x^x \right) \)[/tex] when [tex]\( x = 4 \)[/tex] is [tex]\(\boxed{1028}\)[/tex].
The correct answer is:
c. 1028