Answer :
Sure! Let's simplify the given measurement step-by-step. Here is how you simplify the units:
1. Start with the given measurement:
[tex]\[ 6.2 \frac{ \text{kg} \cdot L^2 \cdot \text{kg} }{ \text{kg}^2 \cdot L \cdot s } \][/tex]
2. Combine like terms in the numerator:
[tex]\[ \text{kg} \cdot L^2 \cdot \text{kg} = \text{kg}^2 \cdot L^2 \][/tex]
So, the expression becomes:
[tex]\[ 6.2 \frac{ \text{kg}^2 \cdot L^2 }{ \text{kg}^2 \cdot L \cdot s } \][/tex]
3. Cancel out the [tex]\(\text{kg}^2\)[/tex] term from the numerator and the denominator:
[tex]\[ \frac{ \text{kg}^2 \cdot L^2 }{ \text{kg}^2 \cdot L \cdot s } = \frac{ L^2 }{ L \cdot s } \][/tex]
4. Simplify [tex]\(\frac{ L^2 }{ L \cdot s }\)[/tex]:
[tex]\[ \frac{ L^2 }{ L \cdot s } = \frac{ L \cdot L }{ L \cdot s } = \frac{ L }{ s } \][/tex]
Therefore, the simplified measurement is:
[tex]\[ 6.2 \frac{ L }{ s } \][/tex]
So, the rewritten simpler unit for the given measurement is [tex]\(6.2 \frac{L}{s}\)[/tex].
1. Start with the given measurement:
[tex]\[ 6.2 \frac{ \text{kg} \cdot L^2 \cdot \text{kg} }{ \text{kg}^2 \cdot L \cdot s } \][/tex]
2. Combine like terms in the numerator:
[tex]\[ \text{kg} \cdot L^2 \cdot \text{kg} = \text{kg}^2 \cdot L^2 \][/tex]
So, the expression becomes:
[tex]\[ 6.2 \frac{ \text{kg}^2 \cdot L^2 }{ \text{kg}^2 \cdot L \cdot s } \][/tex]
3. Cancel out the [tex]\(\text{kg}^2\)[/tex] term from the numerator and the denominator:
[tex]\[ \frac{ \text{kg}^2 \cdot L^2 }{ \text{kg}^2 \cdot L \cdot s } = \frac{ L^2 }{ L \cdot s } \][/tex]
4. Simplify [tex]\(\frac{ L^2 }{ L \cdot s }\)[/tex]:
[tex]\[ \frac{ L^2 }{ L \cdot s } = \frac{ L \cdot L }{ L \cdot s } = \frac{ L }{ s } \][/tex]
Therefore, the simplified measurement is:
[tex]\[ 6.2 \frac{ L }{ s } \][/tex]
So, the rewritten simpler unit for the given measurement is [tex]\(6.2 \frac{L}{s}\)[/tex].