Answered

Prove the identity:

[tex]\[
\left(\sec^2 x - 1\right) \cos x = \tan x \sin x
\][/tex]

Note: Each statement must be based on a rule chosen from the rule menu. To see a detailed description of a rule, select the "More Information" button to the right of the rule.

Statement:

[tex]\[
\left(\sec^2 x - 1\right) \cos x
\][/tex]

[tex]\[
\square
\][/tex]

Validate Rule:
Select Rule



Answer :

To prove the identity
[tex]\[ \left(\sec^2 x - 1\right) \cos x = \tan x \sin x \][/tex]
we will use trigonometric identities and algebraic manipulations step-by-step.

### Step 1: Start with the Left-Hand Side (LHS)
The LHS of the given identity is:
[tex]\[ \left(\sec^2 x - 1\right) \cos x \][/tex]

### Step 2: Use the trigonometric identity
We know from trigonometric identities that:
[tex]\[ \sec^2 x - 1 = \tan^2 x \][/tex]
Substituting this identity into the LHS, we get:
[tex]\[ \left(\tan^2 x\right) \cos x \][/tex]

### Step 3: Simplify the expression
Recall the definition of [tex]\(\tan x\)[/tex] as:
[tex]\[ \tan x = \frac{\sin x}{\cos x} \][/tex]
So, [tex]\(\tan^2 x = \left(\frac{\sin x}{\cos x}\right)^2 = \frac{\sin^2 x}{\cos^2 x}\)[/tex].

Substituting [tex]\(\tan^2 x\)[/tex] back, we obtain:
[tex]\[ \frac{\sin^2 x}{\cos^2 x} \cos x = \frac{\sin^2 x}{\cos x} \][/tex]

### Step 4: Simplify further
Now, simplify the expression:
[tex]\[ \frac{\sin^2 x}{\cos x} = \sin x \cdot \frac{\sin x}{\cos x} = \sin x \tan x \][/tex]

Thus, we have:
[tex]\[ \left(\sec^2 x - 1\right) \cos x = \sin x \tan x \][/tex]

### Step 5: Compare with the Right-Hand Side (RHS)
The RHS of the given identity is:
[tex]\[ \tan x \sin x \][/tex]

Clearly,
[tex]\[ \sin x \tan x = \tan x \sin x \][/tex]

### Conclusion
Both sides are equal:
[tex]\[ \left(\sec^2 x - 1\right) \cos x = \tan x \sin x \][/tex]

Hence, the identity is proven to be true.