Answered

Find all solutions of the equation in the interval [tex]$[0,2\pi)$[/tex].

[tex]\[
(2 \cos \theta - \sqrt{3})(2 \sin \theta - 1) = 0
\][/tex]

Write your answer in radians in terms of [tex]$\pi$[/tex]. If there is more than one solution, separate them with commas.

[tex]\[
\theta = \boxed{}
\][/tex]



Answer :

To solve the equation [tex]\((2 \cos \theta - \sqrt{3})(2 \sin \theta - 1) = 0\)[/tex], we need to consider each factor separately and solve for [tex]\(\theta\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex].

### Factor 1: [tex]\(2 \cos \theta - \sqrt{3} = 0\)[/tex]

1. Set [tex]\(2 \cos \theta - \sqrt{3} = 0\)[/tex] and solve for [tex]\(\cos \theta\)[/tex].
[tex]\[ 2 \cos \theta = \sqrt{3} \][/tex]
[tex]\[ \cos \theta = \frac{\sqrt{3}}{2} \][/tex]

2. Determine the values of [tex]\(\theta\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex] where [tex]\(\cos \theta = \frac{\sqrt{3}}{2}\)[/tex].
[tex]\[ \cos \theta = \frac{\sqrt{3}}{2} \text{ at } \theta = \frac{\pi}{6}, \frac{11\pi}{6} \][/tex]

### Factor 2: [tex]\(2 \sin \theta - 1 = 0\)[/tex]

1. Set [tex]\(2 \sin \theta - 1 = 0\)[/tex] and solve for [tex]\(\sin \theta\)[/tex].
[tex]\[ 2 \sin \theta = 1 \][/tex]
[tex]\[ \sin \theta = \frac{1}{2} \][/tex]

2. Determine the values of [tex]\(\theta\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex] where [tex]\(\sin \theta = \frac{1}{2}\)[/tex].
[tex]\[ \sin \theta = \frac{1}{2} \text{ at } \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]

### Combine Solutions

We combine the solutions from each factor and ensure they are within the interval [tex]\([0, 2\pi)\)[/tex].

#### Solutions from [tex]\(2 \cos \theta - \sqrt{3} = 0\)[/tex]:
[tex]\[ \theta = \frac{\pi}{6}, \frac{11\pi}{6} \][/tex]

#### Solutions from [tex]\(2 \sin \theta - 1 = 0\)[/tex]:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]

Combine these solutions into a single set and sort them:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6} \][/tex]

Thus, the final solutions to the equation [tex]\((2 \cos \theta - \sqrt{3})(2 \sin \theta - 1) = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:

[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6} \][/tex]