When [tex]$m=2$[/tex] and [tex]$p=\frac{1}{4}$[/tex], [tex][tex]$j=32$[/tex][/tex]. If [tex]$j$[/tex] varies directly with [tex]$m$[/tex] and inversely with [tex][tex]$p$[/tex][/tex], what is the constant of variation?

A. [tex]4[/tex]
B. [tex]16[/tex]
C. [tex]64[/tex]
D. [tex]256[/tex]



Answer :

To find the constant of variation [tex]\( k \)[/tex] in the equation where [tex]\( j \)[/tex] varies directly with [tex]\( m \)[/tex] and inversely with [tex]\( p \)[/tex], we start with the direct variation equation:

[tex]\[ j = k \frac{m}{p} \][/tex]

Given values:
- [tex]\( m = 2 \)[/tex]
- [tex]\( p = \frac{1}{4} \)[/tex]
- [tex]\( j = 32 \)[/tex]

We need to solve for [tex]\( k \)[/tex]. First, substitute the given values into the equation:

[tex]\[ 32 = k \frac{2}{\frac{1}{4}} \][/tex]

Simplify the fraction [tex]\(\frac{2}{\frac{1}{4}}\)[/tex]:

[tex]\[ \frac{2}{\frac{1}{4}} = 2 \times 4 = 8 \][/tex]

This simplifies our equation to:

[tex]\[ 32 = k \times 8 \][/tex]

Next, solve for [tex]\( k \)[/tex] by dividing both sides of the equation by 8:

[tex]\[ k = \frac{32}{8} = 4 \][/tex]

Therefore, the constant of variation is [tex]\( \boxed{4} \)[/tex].