Let's break down the problem step-by-step:
1. Identify the expression: The problem involves calculating four times the sum of a number [tex]\( y \)[/tex] and 5.
2. Set up the expression: We start by adding the number [tex]\( y \)[/tex] to 5. So we have [tex]\( y + 5 \)[/tex].
3. Multiply by 4: Next, we need to multiply the sum by 4. Therefore, the full expression to be evaluated is [tex]\( 4 \times (y + 5) \)[/tex].
4. Calculate the result: We need to substitute the given value of [tex]\( y \)[/tex]. Here, let's assume [tex]\( y \)[/tex] is 0 for simplification:
[tex]\[
\text{Result} = 4 \times (0 + 5)
\][/tex]
5. Simplify inside the parenthesis:
[tex]\[
\text{Result} = 4 \times 5
\][/tex]
6. Final multiplication:
[tex]\[
\text{Result} = 20
\][/tex]
Thus, four times the sum of the number [tex]\( y \)[/tex] and 5, when [tex]\( y = 0 \)[/tex], simplifies to 20.