16. यदि [tex]\(A \subseteq B\)[/tex], [tex]\(n(A) = 50\)[/tex] र [tex]\(n(B) = 60\)[/tex] भए [tex]\(n(A \cup B)\)[/tex] को मान पत्ता लगाउनुहोस्।

If [tex]\(A \subseteq B\)[/tex], [tex]\(n(A) = 50\)[/tex] and [tex]\(n(B) = 60\)[/tex], then find the value of [tex]\(n(A \cup B)\)[/tex].



Answer :

To solve the problem of finding the value of [tex]\( n(A \cup B) \)[/tex] given that [tex]\( A \subseteq B \)[/tex], [tex]\( n(A) = 50 \)[/tex], and [tex]\( n(B) = 60 \)[/tex], follow these steps:

1. Understand the Union of Sets:

The union of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cup B \)[/tex], includes all elements that are in [tex]\( A \)[/tex], [tex]\( B \)[/tex], or in both.

2. Given A is a Subset of B:

Since [tex]\( A \subseteq B \)[/tex], all elements of [tex]\( A \)[/tex] are already included in [tex]\( B \)[/tex]. This means that the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] does not add any new elements to [tex]\( B \)[/tex]. Therefore, [tex]\( A \cup B \)[/tex] is essentially just [tex]\( B \)[/tex].

3. Applying the Given Information:

Given [tex]\( n(A) = 50 \)[/tex] and [tex]\( n(B) = 60 \)[/tex], we can directly use the fact that all elements of [tex]\( A \)[/tex] are within [tex]\( B \)[/tex].

4. Conclusion:

Because [tex]\( A \subseteq B \)[/tex], the number of elements in [tex]\( A \cup B \)[/tex] is equal to the number of elements in [tex]\( B \)[/tex].

Therefore, the value of [tex]\( n(A \cup B) \)[/tex] is:
[tex]\[ n(A \cup B) = n(B) = 60 \][/tex]