Answer :
Let's find the sum for each expression step by step:
(i) [tex]\( 100 + (-18) + (-25) + (-63) \)[/tex]
1. Start with 100.
2. Add -18: [tex]\( 100 + (-18) = 82 \)[/tex].
3. Add -25: [tex]\( 82 + (-25) = 57 \)[/tex].
4. Add -63: [tex]\( 57 + (-63) = -6 \)[/tex].
So, the sum for (i) is [tex]\(-6\)[/tex].
(ii) [tex]\( 1295 + (-410) + (-878) + 312 \)[/tex]
1. Start with 1295.
2. Add -410: [tex]\( 1295 + (-410) = 885 \)[/tex].
3. Add -878: [tex]\( 885 + (-878) = 7 \)[/tex].
4. Add 312: [tex]\( 7 + 312 = 319 \)[/tex].
So, the sum for (ii) is [tex]\( 319 \)[/tex].
(iii) [tex]\( 1000 + 873 + (-874) + (-999) \)[/tex]
1. Start with 1000.
2. Add 873: [tex]\( 1000 + 873 = 1873 \)[/tex].
3. Add -874: [tex]\( 1873 + (-874) = 999 \)[/tex].
4. Add -999: [tex]\( 999 + (-999) = 0 \)[/tex].
So, the sum for (iii) is [tex]\( 0 \)[/tex].
(iv) [tex]\( 2004 + 516 + (-520) - 1999 \)[/tex]
1. Start with 2004.
2. Add 516: [tex]\( 2004 + 516 = 2520 \)[/tex].
3. Add -520: [tex]\( 2520 + (-520) = 2000 \)[/tex].
4. Subtract 1999: [tex]\( 2000 - 1999 = 1 \)[/tex].
So, the sum for (iv) is [tex]\( 1 \)[/tex].
(v) [tex]\( (-7) + (+10) + (-6) + (-11) + (+9) + (+2) \)[/tex]
1. Start with -7.
2. Add 10: [tex]\( -7 + 10 = 3 \)[/tex].
3. Add -6: [tex]\( 3 + (-6) = -3 \)[/tex].
4. Add -11: [tex]\( -3 + (-11) = -14 \)[/tex].
5. Add 9: [tex]\( -14 + 9 = -5 \)[/tex].
6. Add 2: [tex]\( -5 + 2 = -3 \)[/tex].
So, the sum for (v) is [tex]\( -3 \)[/tex].
Thus, in summary:
(i) [tex]\( -6 \)[/tex]
(ii) [tex]\( 319 \)[/tex]
(iii) [tex]\( 0 \)[/tex]
(iv) [tex]\( 1 \)[/tex]
(v) [tex]\( -3 \)[/tex]
(i) [tex]\( 100 + (-18) + (-25) + (-63) \)[/tex]
1. Start with 100.
2. Add -18: [tex]\( 100 + (-18) = 82 \)[/tex].
3. Add -25: [tex]\( 82 + (-25) = 57 \)[/tex].
4. Add -63: [tex]\( 57 + (-63) = -6 \)[/tex].
So, the sum for (i) is [tex]\(-6\)[/tex].
(ii) [tex]\( 1295 + (-410) + (-878) + 312 \)[/tex]
1. Start with 1295.
2. Add -410: [tex]\( 1295 + (-410) = 885 \)[/tex].
3. Add -878: [tex]\( 885 + (-878) = 7 \)[/tex].
4. Add 312: [tex]\( 7 + 312 = 319 \)[/tex].
So, the sum for (ii) is [tex]\( 319 \)[/tex].
(iii) [tex]\( 1000 + 873 + (-874) + (-999) \)[/tex]
1. Start with 1000.
2. Add 873: [tex]\( 1000 + 873 = 1873 \)[/tex].
3. Add -874: [tex]\( 1873 + (-874) = 999 \)[/tex].
4. Add -999: [tex]\( 999 + (-999) = 0 \)[/tex].
So, the sum for (iii) is [tex]\( 0 \)[/tex].
(iv) [tex]\( 2004 + 516 + (-520) - 1999 \)[/tex]
1. Start with 2004.
2. Add 516: [tex]\( 2004 + 516 = 2520 \)[/tex].
3. Add -520: [tex]\( 2520 + (-520) = 2000 \)[/tex].
4. Subtract 1999: [tex]\( 2000 - 1999 = 1 \)[/tex].
So, the sum for (iv) is [tex]\( 1 \)[/tex].
(v) [tex]\( (-7) + (+10) + (-6) + (-11) + (+9) + (+2) \)[/tex]
1. Start with -7.
2. Add 10: [tex]\( -7 + 10 = 3 \)[/tex].
3. Add -6: [tex]\( 3 + (-6) = -3 \)[/tex].
4. Add -11: [tex]\( -3 + (-11) = -14 \)[/tex].
5. Add 9: [tex]\( -14 + 9 = -5 \)[/tex].
6. Add 2: [tex]\( -5 + 2 = -3 \)[/tex].
So, the sum for (v) is [tex]\( -3 \)[/tex].
Thus, in summary:
(i) [tex]\( -6 \)[/tex]
(ii) [tex]\( 319 \)[/tex]
(iii) [tex]\( 0 \)[/tex]
(iv) [tex]\( 1 \)[/tex]
(v) [tex]\( -3 \)[/tex]