Given that [tex]\( y \)[/tex] is inversely proportional to the square of [tex]\( x \)[/tex], the table of values for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is shown below:

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
x & 1 & 2 & 3 & 4 \\
\hline
y & 4 & 1 & \frac{4}{9} & \frac{1}{4} \\
\hline
\end{tabular}
\][/tex]

a) Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].

b) Work out the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex].



Answer :

To solve this problem, we will follow the steps to address both parts (a) and (b) using the given relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

### Part (a)

Given that [tex]\( y \)[/tex] is inversely proportional to the square of [tex]\( x \)[/tex], we can write this relationship as:
[tex]\[ y = \frac{k}{x^2} \][/tex]
where [tex]\( k \)[/tex] is a constant.

To determine the constant [tex]\( k \)[/tex], we use one set of values from the table. Let's use [tex]\( x = 1 \)[/tex] and [tex]\( y = 4 \)[/tex].

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 4 \)[/tex] into the equation:
[tex]\[ 4 = \frac{k}{1^2} \][/tex]
[tex]\[ 4 = k \][/tex]

Thus, the constant [tex]\( k = 4 \)[/tex].

Therefore, the equation expressing [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is:
[tex]\[ y = \frac{4}{x^2} \][/tex]

### Part (b)

To find the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex], we use the relationship established:

[tex]\[ y = \frac{4}{x^2} \][/tex]

Substitute [tex]\( y = 25 \)[/tex] into the equation:

[tex]\[ 25 = \frac{4}{x^2} \][/tex]

To find [tex]\( x^2 \)[/tex], multiply both sides of the equation by [tex]\( x^2 \)[/tex]:

[tex]\[ 25x^2 = 4 \][/tex]

Now, solve for [tex]\( x^2 \)[/tex]:

[tex]\[ x^2 = \frac{4}{25} \][/tex]

Taking the square root of both sides to find [tex]\( x \)[/tex]:

[tex]\[ x = \sqrt{\frac{4}{25}} \][/tex]
[tex]\[ x = \frac{2}{5} \][/tex]
[tex]\[ x = 0.4 \][/tex]

Thus, the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex] is [tex]\( x = 0.4 \)[/tex].