Simplify:

[tex]\[ \left(a^2 - 6ab + 9b^2 - 4c^2\right) \div (a - 3b + 2c) \][/tex]

A. [tex]\((a - 3b - 2c)\)[/tex]



Answer :

To simplify the given expression:
[tex]\[ \frac{a^2 - 6ab + 9b^2 - 4c^2}{a - 3b + 2c}, \][/tex]

we start by examining the numerator: [tex]\(a^2 - 6ab + 9b^2 - 4c^2\)[/tex].

First, let's observe if the numerator can be factored.

The terms [tex]\(a^2 - 6ab + 9b^2\)[/tex] suggest a perfect square trinomial:
[tex]\[ a^2 - 6ab + 9b^2 = (a - 3b)^2. \][/tex]

Next, look at the term [tex]\(-4c^2\)[/tex]. This is a perfect square, which can be written as [tex]\((-2c)^2\)[/tex].

Thus, the numerator can be rewritten as the difference of two squares:
[tex]\[ (a - 3b)^2 - (2c)^2. \][/tex]

We can now apply the difference of squares formula, [tex]\(x^2 - y^2 = (x - y)(x + y)\)[/tex]:
[tex]\[ (a - 3b)^2 - (2c)^2 = \left( (a - 3b) - 2c \right)\left( (a - 3b) + 2c \right). \][/tex]

Therefore, our numerator becomes:
[tex]\[ \left( (a - 3b) - 2c \right)\left( (a - 3b) + 2c \right), \][/tex]

or more clearly:
[tex]\[ (a - 3b - 2c)(a - 3b + 2c). \][/tex]

The original expression now looks like this:
[tex]\[ \frac{(a - 3b - 2c)(a - 3b + 2c)}{a - 3b + 2c}. \][/tex]

Since [tex]\(a - 3b + 2c\)[/tex] appears in both the numerator and the denominator, we can cancel it out:
[tex]\[ a - 3b - 2c. \][/tex]

Thus, the simplified expression is:
[tex]\[ \boxed{a - 3b - 2c}. \][/tex]