Let's break down the expression step by step to solve it.
1. First term:
[tex]\( 0.7 \)[/tex]
2. Second term:
[tex]\(\sqrt{7} \times \frac{1}{8}\)[/tex]
We need to multiply the square root of 7 by [tex]\(\frac{1}{8}\)[/tex].
The value of [tex]\(\sqrt{7} \times \frac{1}{8}\)[/tex] is approximately [tex]\(0.33071891388307384\)[/tex].
3. Third term:
[tex]\( \frac{1}{5} + \frac{2}{5} \)[/tex]
These fractions have the same denominator, so we can add the numerators directly:
[tex]\[
\frac{1 + 2}{5} = \frac{3}{5}
\][/tex]
The value of [tex]\(\frac{3}{5}\)[/tex] is [tex]\(0.6\)[/tex].
Now, let's sum these terms:
1. The first term is [tex]\( 0.7 \)[/tex].
2. The second term is approximately [tex]\( 0.33071891388307384 \)[/tex].
3. The third term is [tex]\( 0.6 \)[/tex].
Adding these together:
[tex]\[
0.7 + 0.33071891388307384 + 0.6
\][/tex]
The result of this addition is approximately:
[tex]\[
1.630718913883074
\][/tex]
So, the final evaluated expression is:
[tex]\[
0.7 + \sqrt{7} \times \frac{1}{8} + \left( \frac{1}{5} + \frac{2}{5} \right) \approx 1.630718913883074
\][/tex]