Find all the zeros of [tex]$f(x)$[/tex].

[tex]\[ f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132 \][/tex]

Arrange your answers from smallest to largest. If there is a double root, list it twice.

[tex]\[ x = [?] \][/tex]

[tex]\[ \square \][/tex]

[tex]\[ \square \][/tex]

[tex]\[ \square \][/tex]

[tex]\[ \square \][/tex]



Answer :

To find all the zeros of the polynomial [tex]\( f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132 \)[/tex], we will follow the procedure to determine the roots of the polynomial equation [tex]\( f(x) = 0 \)[/tex].

Step-by-Step Solution:

1. Identify the Polynomial:
The given polynomial is [tex]\( f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132 \)[/tex].

2. Determine the Roots:
To find the roots of the polynomial, we solve the equation [tex]\( f(x) = 0 \)[/tex].

3. Verify and List the Roots:
After solving, we find the roots of the polynomial to be:
[tex]\[ -11, -6, -1, 2 \][/tex]

4. Arrange the Roots in Ascending Order:
The roots should be arranged from smallest to largest. Considering the roots we have:
[tex]\[ -11, -6, -1, 2 \][/tex]

Therefore, the zeros of the polynomial [tex]\( f(x) = x^4 + 16x^3 + 47x^2 - 100x - 132 \)[/tex] arranged from smallest to largest are:

[tex]\[ x = [-11, -6, -1, 2] \][/tex]