For some number [tex]$b$[/tex], where [tex]$b\ \textgreater \ 1$[/tex], the shaded area under the graph of [tex]$f(x)=\frac{2}{x}$[/tex] between [tex]$x=1$[/tex] and [tex]$x=b$[/tex] is 5.8 square units.

In parts a through c, use the Fundamental Theorem to determine the value of [tex]$b$[/tex].

a. First represent the area under [tex]$f(x)=\frac{2}{x}$[/tex] between 1 and [tex]$b$[/tex] as an integral.
[tex]\[ \text{Area} = \int_1^b \frac{2}{x} \, dx \][/tex]

b. Use the Fundamental Theorem to evaluate the definite integral.
[tex]\[
\begin{aligned}
\text{Area} & = \left. 2 \ln|x| \right|_1^b \\
& = 2 \ln|b| - 2 \ln|1|
\end{aligned}
\][/tex]
(Simplify your answer.)

c. Solve an equation to find the value of [tex]$b$[/tex] which makes the area equal to 5.8.
[tex]\[ 2 \ln|b| = 5.8 \][/tex]
[tex]\[ b = e^{2.9} \][/tex]
(Type an exact answer.)



Answer :

Let's break down the problem step by step:

### Part (a)
We need to represent the area under the curve of [tex]\( f(x) = \frac{2}{x} \)[/tex] from [tex]\( x = 1 \)[/tex] to [tex]\( x = b \)[/tex] as an integral.

[tex]\[ \text{Area} = \int_{1}^{b} \frac{2}{x} \, dx \][/tex]

### Part (b)
We will now evaluate the integral using the Fundamental Theorem of Calculus.

First, we find the indefinite integral of [tex]\( \frac{2}{x} \)[/tex]:

[tex]\[ \int \frac{2}{x} \, dx = 2 \ln|x| + C \][/tex]

Next, we apply the limits of integration from 1 to [tex]\( b \)[/tex]:

[tex]\[ \text{Area} = \left. 2 \ln|x| \right|_{1}^{b} \][/tex]

This means we evaluate the antiderivative at [tex]\( x = b \)[/tex] and [tex]\( x = 1 \)[/tex] and subtract the results:

[tex]\[ \text{Area} = 2 \ln|b| - 2 \ln|1| \][/tex]

Since [tex]\( \ln|1| = 0 \)[/tex], this simplifies to:

[tex]\[ \text{Area} = 2 \ln(b) \][/tex]

### Part (c)
We need to find the value of [tex]\( b \)[/tex] such that the area is 5.8 square units. Thus, we set up the equation:

[tex]\[ 2 \ln(b) = 5.8 \][/tex]

We solve for [tex]\( b \)[/tex] by isolating [tex]\( \ln(b) \)[/tex]:

[tex]\[ \ln(b) = \frac{5.8}{2} = 2.9 \][/tex]

To solve for [tex]\( b \)[/tex], we exponentiate both sides to get rid of the logarithm:

[tex]\[ b = e^{2.9} \][/tex]

Therefore, the value of [tex]\( b \)[/tex] that makes the area equal to 5.8 square units is:

[tex]\[ b = 18.1741453694431 \][/tex]

In summary:
1. The integral representing the area is [tex]\(\int_{1}^{b} \frac{2}{x} \, dx\)[/tex].
2. The evaluated integral is [tex]\(2 \ln(b)\)[/tex].
3. Solving the equation [tex]\(2 \ln(b) = 5.8\)[/tex] gives us [tex]\(b = e^{2.9} \approx 18.1741453694431\)[/tex].