Answer :

Sure! Let's simplify the given expression step-by-step.

We start with the expression:

[tex]\[ \frac{\frac{3 r s^2}{14 t^2 u}}{\frac{6 s^5}{7 t^5 u^3}} \][/tex]

When we divide by a fraction, it's equivalent to multiplying by its reciprocal. So, we rewrite the expression as:

[tex]\[ \frac{3 r s^2}{14 t^2 u} \times \frac{7 t^5 u^3}{6 s^5} \][/tex]

Now, let's multiply the numerators together and the denominators together:

Numerator:

[tex]\[ 3 r s^2 \times 7 t^5 u^3 = 21 r s^2 t^5 u^3 \][/tex]

Denominator:

[tex]\[ 14 t^2 u \times 6 s^5 = 84 t^2 u s^5 \][/tex]

This gives us:

[tex]\[ \frac{21 r s^2 t^5 u^3}{84 t^2 u s^5} \][/tex]

Next, we simplify this fraction by dividing both the numerator and the denominator by their greatest common divisor.

First, simplify the coefficients:

[tex]\[ \frac{21}{84} = \frac{1}{4} \][/tex]

Now, let's simplify the variables one by one:

For [tex]\( t \)[/tex]:

[tex]\[ \frac{t^5}{t^2} = t^{5-2} = t^3 \][/tex]

For [tex]\( u \)[/tex]:

[tex]\[ \frac{u^3}{u} = u^{3-1} = u^2 \][/tex]

For [tex]\( s \)[/tex]:

[tex]\[ \frac{s^2}{s^5} = s^{2-5} = s^{-3} = \frac{1}{s^3} \][/tex]

Putting all these together:

[tex]\[ \frac{21 r s^2 t^5 u^3}{84 t^2 u s^5} = \frac{1}{4} \cdot r \cdot t^3 \cdot u^2 \cdot \frac{1}{s^3} = \frac{r t^3 u^2}{4 s^3} \][/tex]

Therefore, the simplified expression is:

[tex]\[ \frac{r t^3 u^2}{4 s^3} \][/tex]