If the fourth term of the binomial expansion of [tex]\left(p x+\frac{1}{x}\right)^n[/tex] is [tex]\frac{5}{2}[/tex], then:

A. [tex]n=6, \, p=6[/tex]

B. [tex]n=8, \, p=6[/tex]

C. [tex]n=8, \, p=\frac{1}{2}[/tex]

D. [tex]n=6, \, p=\frac{1}{2}[/tex]



Answer :

To solve the problem, let's first recall the general form of the binomial expansion:

[tex]\[ \left(a + b\right)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]

In this case, the given binomial expression is [tex]\(\left(px + \frac{1}{x}\right)^n\)[/tex]. Here, [tex]\(a = px\)[/tex] and [tex]\(b = \frac{1}{x}\)[/tex]. According to the problem, the fourth term of this expansion equals [tex]\(\frac{5}{2}\)[/tex].

To find the fourth term in the binomial expansion, we use the formula for the binomial term [tex]\(T_{k+1}\)[/tex]:

[tex]\[ T_{k+1} = \binom{n}{k} a^{n-k} b^k \][/tex]

For the fourth term ([tex]\(T_4\)[/tex]), we set [tex]\(k = 3\)[/tex]:

[tex]\[ T_4 = \binom{n}{3} (px)^{n-3} \left(\frac{1}{x}\right)^3 \][/tex]

Now, we simplify [tex]\(T_4\)[/tex]:

[tex]\[ T_4 = \binom{n}{3} (px)^{n-3} \cdot \frac{1}{x^3} = \binom{n}{3} p^{n-3} x^{n-3-3} x^{-3} = \binom{n}{3} p^{n-3} x^{n-6} \][/tex]

Given that [tex]\(T_4\)[/tex] must equal [tex]\(\frac{5}{2}\)[/tex], we ignore [tex]\(x^{n-6}\)[/tex] since it cancels out, and we get:

[tex]\[ \binom{n}{3} p^{n-3} = \frac{5}{2} \][/tex]

We evaluate this expression to identify [tex]\(n\)[/tex] and [tex]\(p\)[/tex], and this gives us the exact terms. Having explored the options [tex]\(n \in \{6, 8\}, p \in \{6, \frac{1}{2}\}\)[/tex], we find that the successful combination of [tex]\(n\)[/tex] and [tex]\(p\)[/tex] must satisfy the equation exactly.

Upon thorough evaluation and substitution, we find that:

For [tex]\(n = 6\)[/tex] and [tex]\(p = \frac{1}{2}\)[/tex],

[tex]\(\binom{6}{3}\left(\frac{1}{2}\right)^{6-3}\)[/tex]

We know:

[tex]\(\binom{6}{3} = 20\)[/tex] and [tex]\(\left(\frac{1}{2}\right)^3 = \frac{1}{8}\)[/tex],

So,

[tex]\(20 \times \frac{1}{8} = \frac{20}{8} = \frac{5}{2}\)[/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{d) \, n=6, \, p=\frac{1}{2}} \][/tex]