A baseball team won 20 games and lost 10 games. What percent of the games did the team win?

A. [tex]$33 \frac{1}{3} \%$[/tex]
B. [tex]$50 \%$[/tex]
C. [tex]$66 \frac{2}{3} \%$[/tex]
D. [tex]$200 \%$[/tex]



Answer :

To find the percentage of games the baseball team won, follow these steps:

1. Determine the total number of games played:
- The number of games won is 20.
- The number of games lost is 10.
- Therefore, the total number of games played is [tex]\( 20 \, \text{(games won)} + 10 \, \text{(games lost)} = 30 \, \text{games} \)[/tex].

2. Calculate the winning percentage:
- The winning percentage can be found using the formula:

[tex]\[ \text{Winning Percentage} = \left( \frac{\text{Number of Games Won}}{\text{Total Number of Games}} \right) \times 100 \][/tex]

- Plug in the values:

[tex]\[ \text{Winning Percentage} = \left( \frac{20}{30} \right) \times 100 \][/tex]

3. Perform the division and multiplication:
- First, divide 20 by 30:

[tex]\[ \frac{20}{30} = \frac{2}{3} \approx 0.6666666666666666 \][/tex]

- Next, multiply by 100 to convert the decimal to a percentage:

[tex]\[ 0.6666666666666666 \times 100 \approx 66.66666666666666 \% \][/tex]

4. Choose the correct option based on the calculated percentage:
- The choices given are:
- [tex]\( 33 \frac{1}{3} \% \)[/tex]
- [tex]\( 50 \% \)[/tex]
- [tex]\( 66 \frac{2}{3} \% \)[/tex]
- [tex]\( 200 \% \)[/tex]

- The correct option that matches [tex]\( 66.66666666666666 \% \)[/tex] is [tex]\( 66 \frac{2}{3} \% \)[/tex].

Therefore, the baseball team won [tex]\( 66 \frac{2}{3} \% \)[/tex] of their games.