Answer :

Answer:

[tex]\boxed{A=\dfrac{169}{4}\pi\ \text{ ft}^2}[/tex]

Step-by-step explanation:

We know the following formulas regarding circles:

  • [tex]C=2\pi r[/tex]
  • [tex]A=\pi r^2[/tex]

where [tex]r[/tex] is the circle's radius and [tex]\pi[/tex] is a constant [tex]\approx 3.14159[/tex].

We are given the circumference of a circle:

  • [tex]C=13\pi[/tex]

Plugging this into the first equation, we can solve for r:

[tex]13\pi = 2\pi r[/tex]

↓ dividing both sides by [tex]2\pi[/tex]

[tex]\dfrac{13}{2} = r[/tex]

We can now solve for area using this r-value:

[tex]A=\pi r^2[/tex]

[tex]A=\pi (13/2)^2[/tex]

[tex]\boxed{A=\dfrac{169}{4}\pi\ \text{ ft}^2}[/tex]