Answer :
Sure! Let's analyze the problem step-by-step, based on the provided data.
### Given data:
1. Time for the first 0.25 meters (0.25m):
- [tex]\( t_1 \)[/tex] for Trial 1: [tex]\( 2.24 \)[/tex] s
- [tex]\( t_1 \)[/tex] for Trial 2: [tex]\( 2.21 \)[/tex] s
- [tex]\( t_1 \)[/tex] for Trial 3: [tex]\( 2.23 \)[/tex] s
- Average [tex]\( t_1 \)[/tex]: [tex]\( 2.23 \)[/tex] s
2. Time for the second 0.25 meters (0.25m):
- [tex]\( t_2 \)[/tex] for Trial 1: [tex]\( 3.16 \)[/tex] s
- [tex]\( t_2 \)[/tex] for Trial 2: [tex]\( 3.08 \)[/tex] s
- [tex]\( t_2 \)[/tex] for Trial 3: [tex]\( 3.15 \)[/tex] s
- Average [tex]\( t_2 \)[/tex]: [tex]\( 3.13 \)[/tex] s
### Calculating average velocity for each segment:
#### 1. Average velocity for the first 0.25 meters:
The average time for the first 0.25 meters (average [tex]\( t_1 \)[/tex]) is [tex]\( 2.23 \)[/tex] seconds.
[tex]\[ \text{Average Velocity}_1 = \frac{\text{Distance}}{\text{Average Time}} = \frac{0.25 \, \text{m}}{2.23 \, \text{s}} \approx 0.112 \, \text{m/s} \][/tex]
#### 2. Average velocity for the second 0.25 meters:
The average time for the second 0.25 meters (average [tex]\( t_2 \)[/tex]) is [tex]\( 3.13 \)[/tex] seconds.
[tex]\[ \text{Average Velocity}_2 = \frac{\text{Distance}}{\text{Average Time}} = \frac{0.25 \, \text{m}}{3.13 \, \text{s}} \approx 0.080 \, \text{m/s} \][/tex]
### Final results:
- The average velocity of the car over the first 0.25 meters is approximately [tex]\( 0.112 \, \text{m/s} \)[/tex].
- The average velocity of the car over the second 0.25 meters is approximately [tex]\( 0.080 \, \text{m/s} \)[/tex].
Feel free to ask if you have any more questions!
### Given data:
1. Time for the first 0.25 meters (0.25m):
- [tex]\( t_1 \)[/tex] for Trial 1: [tex]\( 2.24 \)[/tex] s
- [tex]\( t_1 \)[/tex] for Trial 2: [tex]\( 2.21 \)[/tex] s
- [tex]\( t_1 \)[/tex] for Trial 3: [tex]\( 2.23 \)[/tex] s
- Average [tex]\( t_1 \)[/tex]: [tex]\( 2.23 \)[/tex] s
2. Time for the second 0.25 meters (0.25m):
- [tex]\( t_2 \)[/tex] for Trial 1: [tex]\( 3.16 \)[/tex] s
- [tex]\( t_2 \)[/tex] for Trial 2: [tex]\( 3.08 \)[/tex] s
- [tex]\( t_2 \)[/tex] for Trial 3: [tex]\( 3.15 \)[/tex] s
- Average [tex]\( t_2 \)[/tex]: [tex]\( 3.13 \)[/tex] s
### Calculating average velocity for each segment:
#### 1. Average velocity for the first 0.25 meters:
The average time for the first 0.25 meters (average [tex]\( t_1 \)[/tex]) is [tex]\( 2.23 \)[/tex] seconds.
[tex]\[ \text{Average Velocity}_1 = \frac{\text{Distance}}{\text{Average Time}} = \frac{0.25 \, \text{m}}{2.23 \, \text{s}} \approx 0.112 \, \text{m/s} \][/tex]
#### 2. Average velocity for the second 0.25 meters:
The average time for the second 0.25 meters (average [tex]\( t_2 \)[/tex]) is [tex]\( 3.13 \)[/tex] seconds.
[tex]\[ \text{Average Velocity}_2 = \frac{\text{Distance}}{\text{Average Time}} = \frac{0.25 \, \text{m}}{3.13 \, \text{s}} \approx 0.080 \, \text{m/s} \][/tex]
### Final results:
- The average velocity of the car over the first 0.25 meters is approximately [tex]\( 0.112 \, \text{m/s} \)[/tex].
- The average velocity of the car over the second 0.25 meters is approximately [tex]\( 0.080 \, \text{m/s} \)[/tex].
Feel free to ask if you have any more questions!