Answer :
To determine the average velocities of the car over the distances given, we need to use the basic formula for velocity:
[tex]\[ \text{Velocity} = \frac{\text{Distance}}{\text{Time}} \][/tex]
We are provided with the following data:
- The first 0.25 m (meters) is covered in an average time of [tex]\( t_1 = 2.23 \)[/tex] seconds.
- The second 0.25 m is covered in an average time of [tex]\( t_2 = 3.13 \)[/tex] seconds.
1. Calculate the average velocity over the first 0.25 m:
Given:
- Distance ([tex]\(d_1\)[/tex]): 0.25 meters
- Average time ([tex]\(t_1\)[/tex]): 2.23 seconds
Using the formula:
[tex]\[ v_1 = \frac{d_1}{t_1} = \frac{0.25}{2.23} \][/tex]
So:
[tex]\[ v_1 = 0.11210762331838565 \, \text{m/s} \][/tex]
2. Calculate the average velocity over the second 0.25 m:
Given:
- Distance ([tex]\(d_2\)[/tex]): 0.25 meters
- Average time ([tex]\(t_2\)[/tex]): 3.13 seconds
Using the formula:
[tex]\[ v_2 = \frac{d_2}{t_2} = \frac{0.25}{3.13} \][/tex]
So:
[tex]\[ v_2 = 0.07987220447284345 \, \text{m/s} \][/tex]
Results:
- The average velocity of the car over the first 0.25 meters is [tex]\( 0.11210762331838565 \)[/tex] meters per second.
- The average velocity of the car over the second 0.25 meters is [tex]\( 0.07987220447284345 \)[/tex] meters per second.
[tex]\[ \text{Velocity} = \frac{\text{Distance}}{\text{Time}} \][/tex]
We are provided with the following data:
- The first 0.25 m (meters) is covered in an average time of [tex]\( t_1 = 2.23 \)[/tex] seconds.
- The second 0.25 m is covered in an average time of [tex]\( t_2 = 3.13 \)[/tex] seconds.
1. Calculate the average velocity over the first 0.25 m:
Given:
- Distance ([tex]\(d_1\)[/tex]): 0.25 meters
- Average time ([tex]\(t_1\)[/tex]): 2.23 seconds
Using the formula:
[tex]\[ v_1 = \frac{d_1}{t_1} = \frac{0.25}{2.23} \][/tex]
So:
[tex]\[ v_1 = 0.11210762331838565 \, \text{m/s} \][/tex]
2. Calculate the average velocity over the second 0.25 m:
Given:
- Distance ([tex]\(d_2\)[/tex]): 0.25 meters
- Average time ([tex]\(t_2\)[/tex]): 3.13 seconds
Using the formula:
[tex]\[ v_2 = \frac{d_2}{t_2} = \frac{0.25}{3.13} \][/tex]
So:
[tex]\[ v_2 = 0.07987220447284345 \, \text{m/s} \][/tex]
Results:
- The average velocity of the car over the first 0.25 meters is [tex]\( 0.11210762331838565 \)[/tex] meters per second.
- The average velocity of the car over the second 0.25 meters is [tex]\( 0.07987220447284345 \)[/tex] meters per second.