Answered

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\begin{tabular}{l}
Number of \\
washers
\end{tabular} & Trial & \multicolumn{2}{|c|}{\begin{tabular}{l}
[tex]$t_1(s)$[/tex]
\end{tabular}} & \begin{tabular}{l}
[tex]$t_2(s)$[/tex]
\end{tabular} & \begin{tabular}{l}
Time [tex]$t_2$[/tex] (s)
\end{tabular} \\
\hline
\multirow{3}{}{\begin{tabular}{l}
1 washer mass = \\
4.9 g
\end{tabular}} & Trial \#1 & 2.24 & \multirow{3}{
}{\begin{tabular}{l}
Average \\
2.23
\end{tabular}} & 3.16 & \multirow{3}{*}{\begin{tabular}{l}
Average \\
3.13
\end{tabular}} \\
\hline & Trial \#2 & 2.21 & & 3.08 & \\
\hline & Trial \#3 & 2.23 & & 3.15 & \\
\hline
\end{tabular}

What is the average velocity of the car over the first 0.25 m?
What is the average velocity of the car over the second 0.25 m? [tex] \, \text{m/s} [/tex]



Answer :

To determine the average velocities of the car over the distances given, we need to use the basic formula for velocity:
[tex]\[ \text{Velocity} = \frac{\text{Distance}}{\text{Time}} \][/tex]

We are provided with the following data:

- The first 0.25 m (meters) is covered in an average time of [tex]\( t_1 = 2.23 \)[/tex] seconds.
- The second 0.25 m is covered in an average time of [tex]\( t_2 = 3.13 \)[/tex] seconds.

1. Calculate the average velocity over the first 0.25 m:

Given:
- Distance ([tex]\(d_1\)[/tex]): 0.25 meters
- Average time ([tex]\(t_1\)[/tex]): 2.23 seconds

Using the formula:
[tex]\[ v_1 = \frac{d_1}{t_1} = \frac{0.25}{2.23} \][/tex]

So:
[tex]\[ v_1 = 0.11210762331838565 \, \text{m/s} \][/tex]

2. Calculate the average velocity over the second 0.25 m:

Given:
- Distance ([tex]\(d_2\)[/tex]): 0.25 meters
- Average time ([tex]\(t_2\)[/tex]): 3.13 seconds

Using the formula:
[tex]\[ v_2 = \frac{d_2}{t_2} = \frac{0.25}{3.13} \][/tex]

So:
[tex]\[ v_2 = 0.07987220447284345 \, \text{m/s} \][/tex]

Results:

- The average velocity of the car over the first 0.25 meters is [tex]\( 0.11210762331838565 \)[/tex] meters per second.
- The average velocity of the car over the second 0.25 meters is [tex]\( 0.07987220447284345 \)[/tex] meters per second.