Answer :
To solve this problem, let’s break it down into clear steps:
1. Calculate the moles of sulfuric acid (H₂SO₄):
The molarity (M) of H₂SO₄ is given as 1.50 M, and the volume of H₂SO₄ we have is 0.690 L.
Using the formula:
[tex]\[ \text{Moles of H₂SO₄} = \text{Molarity} \times \text{Volume} \][/tex]
[tex]\[ \text{Moles of H₂SO₄} = 1.50 \times 0.690 = 1.035 \text{ moles} \][/tex]
2. Determine the moles of carbon dioxide (CO₂) produced:
According to the balanced chemical equation provided:
[tex]\[ Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O \][/tex]
The reaction shows that 1 mole of H₂SO₄ produces 1 mole of CO₂.
Hence, the moles of CO₂ produced will be equal to the moles of H₂SO₄ reacted:
[tex]\[ \text{Moles of CO₂} = 1.035 \text{ moles} \][/tex]
3. Calculate the volume of CO₂ gas produced using the Ideal Gas Law:
The Ideal Gas Law is:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure (in atm)
- [tex]\(V\)[/tex] is the volume (in L)
- [tex]\(n\)[/tex] is the number of moles
- [tex]\(R\)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol))
- [tex]\(T\)[/tex] is the temperature (in K)
Rearranging the Ideal Gas Law to solve for the volume ([tex]\(V\)[/tex]):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting the given values:
- [tex]\(n = 1.035\)[/tex] moles
- [tex]\(R = 0.0821\)[/tex] L·atm/(K·mol)
- [tex]\(T = 298\)[/tex] K
- [tex]\(P = 0.98\)[/tex] atm
[tex]\[ V = \frac{1.035 \times 0.0821 \times 298}{0.98} \][/tex]
[tex]\[ V \approx 25.838880612244896 \text{ L} \][/tex]
4. Compare the calculated volume to the given options:
The possible answers are:
- 26 L
- 0.69 L
- 37 L
- 1.04 L
The calculated value, 25.838880612244896 L, is closest to 26 L.
Therefore, the volume of carbon dioxide gas produced from the complete reaction is 26 L.
1. Calculate the moles of sulfuric acid (H₂SO₄):
The molarity (M) of H₂SO₄ is given as 1.50 M, and the volume of H₂SO₄ we have is 0.690 L.
Using the formula:
[tex]\[ \text{Moles of H₂SO₄} = \text{Molarity} \times \text{Volume} \][/tex]
[tex]\[ \text{Moles of H₂SO₄} = 1.50 \times 0.690 = 1.035 \text{ moles} \][/tex]
2. Determine the moles of carbon dioxide (CO₂) produced:
According to the balanced chemical equation provided:
[tex]\[ Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O \][/tex]
The reaction shows that 1 mole of H₂SO₄ produces 1 mole of CO₂.
Hence, the moles of CO₂ produced will be equal to the moles of H₂SO₄ reacted:
[tex]\[ \text{Moles of CO₂} = 1.035 \text{ moles} \][/tex]
3. Calculate the volume of CO₂ gas produced using the Ideal Gas Law:
The Ideal Gas Law is:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure (in atm)
- [tex]\(V\)[/tex] is the volume (in L)
- [tex]\(n\)[/tex] is the number of moles
- [tex]\(R\)[/tex] is the ideal gas constant (0.0821 L·atm/(K·mol))
- [tex]\(T\)[/tex] is the temperature (in K)
Rearranging the Ideal Gas Law to solve for the volume ([tex]\(V\)[/tex]):
[tex]\[ V = \frac{nRT}{P} \][/tex]
Substituting the given values:
- [tex]\(n = 1.035\)[/tex] moles
- [tex]\(R = 0.0821\)[/tex] L·atm/(K·mol)
- [tex]\(T = 298\)[/tex] K
- [tex]\(P = 0.98\)[/tex] atm
[tex]\[ V = \frac{1.035 \times 0.0821 \times 298}{0.98} \][/tex]
[tex]\[ V \approx 25.838880612244896 \text{ L} \][/tex]
4. Compare the calculated volume to the given options:
The possible answers are:
- 26 L
- 0.69 L
- 37 L
- 1.04 L
The calculated value, 25.838880612244896 L, is closest to 26 L.
Therefore, the volume of carbon dioxide gas produced from the complete reaction is 26 L.