Select the expression that is equivalent to the expression below:

[tex]\sqrt[6]{x^5}[/tex]

A. [tex]\frac{x^5}{6}[/tex]
B. [tex]x^{\frac{5}{6}}[/tex]
C. [tex]\frac{6}{x^5}[/tex]
D. [tex]x^{\frac{6}{5}}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt[6]{x^5}\)[/tex], we need to rewrite the given expression using the properties of exponents.

The 6th root of [tex]\(x^5\)[/tex] can be rewritten as an expression with a fractional exponent. The general property we use is:

[tex]\[ \sqrt[n]{a} = a^{\frac{1}{n}} \][/tex]

Therefore:

[tex]\[ \sqrt[6]{x^5} = (x^5)^{\frac{1}{6}} \][/tex]

When we have a power raised to another power, we multiply the exponents:

[tex]\[ (x^5)^{\frac{1}{6}} = x^{5 \times \frac{1}{6}} = x^{\frac{5}{6}} \][/tex]

Thus, the expression [tex]\(\sqrt[6]{x^5}\)[/tex] simplifies to [tex]\(x^{\frac{5}{6}}\)[/tex].

Comparing this result with the given choices:
- A: [tex]\(\frac{x^5}{6}\)[/tex]
- B: [tex]\(x^{\frac{5}{6}}\)[/tex]
- C: [tex]\(\frac{6}{x^5}\)[/tex]
- D: [tex]\(x^{\frac{6}{5}}\)[/tex]

The correct answer is:
B. [tex]\(x^{\frac{5}{6}}\)[/tex]