Which value of [tex]\(a\)[/tex] would make the inequality statement true?

[tex]\[ 9.53 \ \textless \ \sqrt{a} \ \textless \ 9.54 \][/tex]

A. 85
B. 88
C. 91
D. 94



Answer :

To determine which value of [tex]\(a\)[/tex] satisfies the inequality [tex]\( 9.53 < \sqrt{a} < 9.54 \)[/tex], let’s break it down step by step.

1. Establish the boundaries of the inequality:
[tex]\[ 9.53 < \sqrt{a} < 9.54 \][/tex]

2. Square both sides of the inequality to eliminate the square root:
[tex]\[ (9.53)^2 < a < (9.54)^2 \][/tex]
This transforms the inequality to:
[tex]\[ 90.8209 < a < 91.0116 \][/tex]

3. Determine the possible values of [tex]\(a\)[/tex] given in the problem:
[tex]\[ 85, 88, 91, 94 \][/tex]

4. Check each of these values to see if they lie within the range 90.8209 to 91.0116:

- For [tex]\( a = 85 \)[/tex]:
[tex]\[ 85 \notin (90.8209, 91.0116) \][/tex]

- For [tex]\( a = 88 \)[/tex]:
[tex]\[ 88 \notin (90.8209, 91.0116) \][/tex]

- For [tex]\( a = 91 \)[/tex]:
[tex]\[ 91 \in (90.8209, 91.0116) \][/tex]

- For [tex]\( a = 94 \)[/tex]:
[tex]\[ 94 \notin (90.8209, 91.0116) \][/tex]

5. Conclude which value makes the inequality true:

Hence, the value of [tex]\(a\)[/tex] that satisfies the inequality [tex]\( 9.53 < \sqrt{a} < 9.54 \)[/tex] is:

[tex]\[ \boxed{91} \][/tex]