Solve for [tex]\( x \)[/tex]:

[tex]\[ -3x + 3 \ \textless \ 6 \][/tex]

A. [tex]\( x \ \textgreater \ -1 \)[/tex]
B. [tex]\( x \ \textless \ -1 \)[/tex]
C. [tex]\( x \ \textless \ -3 \)[/tex]
D. [tex]\( x \ \textgreater \ -3 \)[/tex]



Answer :

Let's solve the inequality step-by-step:

1. Start with the given inequality:
[tex]\[ -3x + 3 < 6 \][/tex]

2. Subtract 3 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ -3x + 3 - 3 < 6 - 3 \][/tex]
Simplifying this, we get:
[tex]\[ -3x < 3 \][/tex]

3. Now, divide both sides of the inequality by [tex]\(-3\)[/tex]. Remember, when dividing by a negative number, the direction of the inequality sign reverses:
[tex]\[ \frac{-3x}{-3} > \frac{3}{-3} \][/tex]
Simplifying this, we get:
[tex]\[ x > -1 \][/tex]

So, the solution to the inequality is:
[tex]\[ x > -1 \][/tex]