Answer :
To find the force of the impact, we need to calculate the acceleration and then use it to find the force. Here's a step-by-step solution:
1. Initial Information:
- Initial velocity ([tex]\(v_i\)[/tex]) = 16.0 meters/second
- Final velocity ([tex]\(v_f\)[/tex]) = 0.0 meters/second
- Time of impact ([tex]\(t\)[/tex]) = 2.0 seconds
- Mass of toy ([tex]\(m\)[/tex]) = 0.25 kilograms
2. Calculate Acceleration:
[tex]\[ a = \frac{v - s}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{0.0 - 16.0}{2.0} = \frac{-16.0}{2.0} = -8.0 \text{ meters/second}^2 \][/tex]
3. Calculate Force:
[tex]\[ F = m \cdot a \][/tex]
Substituting the values:
[tex]\[ F = 0.25 \cdot -8.0 = -2.0 \text{ newtons} \][/tex]
Therefore, the force of the impact is [tex]\(-2.0\)[/tex] newtons. However, in the context of the magnitude of force, the answer typically referenced is the positive magnitude.
The force of the impact is [tex]\(\boxed{2.0}\)[/tex] newtons.
1. Initial Information:
- Initial velocity ([tex]\(v_i\)[/tex]) = 16.0 meters/second
- Final velocity ([tex]\(v_f\)[/tex]) = 0.0 meters/second
- Time of impact ([tex]\(t\)[/tex]) = 2.0 seconds
- Mass of toy ([tex]\(m\)[/tex]) = 0.25 kilograms
2. Calculate Acceleration:
[tex]\[ a = \frac{v - s}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{0.0 - 16.0}{2.0} = \frac{-16.0}{2.0} = -8.0 \text{ meters/second}^2 \][/tex]
3. Calculate Force:
[tex]\[ F = m \cdot a \][/tex]
Substituting the values:
[tex]\[ F = 0.25 \cdot -8.0 = -2.0 \text{ newtons} \][/tex]
Therefore, the force of the impact is [tex]\(-2.0\)[/tex] newtons. However, in the context of the magnitude of force, the answer typically referenced is the positive magnitude.
The force of the impact is [tex]\(\boxed{2.0}\)[/tex] newtons.