Calculus Algebra

Question 30

Evaluate the determinant of the matrix:

[tex]\[ \left|\begin{array}{rr} 1 & 3 \\ -1 & -3 \end{array}\right| \][/tex]



Answer :

To evaluate the determinant of the given [tex]\( 2 \times 2 \)[/tex] matrix:

[tex]\[ \left|\begin{array}{rr} 1 & 3 \\ -1 & -3 \end{array}\right| \][/tex]

we use the formula for the determinant of a [tex]\( 2 \times 2 \)[/tex] matrix of the form:

[tex]\[ \left|\begin{array}{cc} a & b \\ c & d \end{array}\right| = ad - bc \][/tex]

For our given matrix, we have:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = -1 \)[/tex]
- [tex]\( d = -3 \)[/tex]

By substituting these values into the formula:

[tex]\[ \text{Determinant} = (1 \cdot -3) - (3 \cdot -1) \][/tex]

Calculating inside the parentheses:

[tex]\[ \text{Determinant} = -3 - (-3) \][/tex]

Simplifying the expression inside the parentheses:

[tex]\[ \text{Determinant} = -3 + 3 \][/tex]

Finally, adding the values:

[tex]\[ \text{Determinant} = 0 \][/tex]

Therefore, the determinant of the given matrix is [tex]\( 0 \)[/tex].