What is the exponential regression equation to best fit the data?

Round each value in your equation to two decimal places.
Enter your answer in the box.

[tex]
\hat{y}=\square
[/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
0 & 14 \\
\hline
1 & 23 \\
\hline
2 & 30 \\
\hline
3 & 58 \\
\hline
4 & 137 \\
\hline
5 & 310 \\
\hline
\end{tabular}



Answer :

To find the exponential regression equation that best fits the given data, follow these steps:

1. Identify the Form of the Exponential Equation:
The general form of an exponential equation is:
[tex]\[ y = a \cdot e^{b \cdot x} \][/tex]
where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants to be determined.

2. Given Data Points:
The data points provided are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 14 \\ \hline 1 & 23 \\ \hline 2 & 30 \\ \hline 3 & 58 \\ \hline 4 & 137 \\ \hline 5 & 310 \\ \hline \end{array} \][/tex]

3. Determine the Coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
By fitting these data points to an exponential function using statistical methods, the best-fit values for [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are computed.

4. Round the Coefficients:
Round the coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to two decimal places. From the calculations, we determine:
[tex]\[ a \approx 5.75, \quad b \approx 0.8 \][/tex]

5. Formulate the Equation:
Substitute these values back into the general form of the exponential equation:
[tex]\[ y = 5.75 \cdot e^{0.8 \cdot x} \][/tex]

Therefore, the exponential regression equation that best fits the data, rounded to two decimal places, is:

[tex]\[ \hat{y} = 5.75 \cdot e^{0.8 \cdot x} \][/tex]

So, your final answer should be entered as:

[tex]\[ \hat{y} = 5.75 \cdot e^{0.8x} \][/tex]