Answer :

To simplify [tex]\(\left(\frac{2 x^3}{3 y^2}\right)^4\)[/tex], follow these steps:

1. Expand the power to both the numerator and the denominator:

[tex]\[ \left(\frac{2 x^3}{3 y^2}\right)^4 = \frac{(2 x^3)^4}{(3 y^2)^4} \][/tex]

2. Simplify the numerator [tex]\((2 x^3)^4\)[/tex]:

When raising a product to a power, you raise each factor to the power:

[tex]\[ (2 x^3)^4 = 2^4 \cdot (x^3)^4 \][/tex]

Compute each part separately:

[tex]\[ 2^4 = 16 \][/tex]

For [tex]\((x^3)^4\)[/tex], raise the power of a power by multiplying exponents:

[tex]\[ (x^3)^4 = x^{3 \cdot 4} = x^{12} \][/tex]

So,

[tex]\[ (2 x^3)^4 = 16 x^{12} \][/tex]

3. Simplify the denominator [tex]\((3 y^2)^4\)[/tex]:

Similarly, raise each factor to the power:

[tex]\[ (3 y^2)^4 = 3^4 \cdot (y^2)^4 \][/tex]

Compute each part separately:

[tex]\[ 3^4 = 81 \][/tex]

For [tex]\((y^2)^4\)[/tex], raise the power of a power by multiplying exponents:

[tex]\[ (y^2)^4 = y^{2 \cdot 4} = y^8 \][/tex]

So,

[tex]\[ (3 y^2)^4 = 81 y^8 \][/tex]

4. Combine the simplified numerator and denominator:

[tex]\[ \frac{(2 x^3)^4}{(3 y^2)^4} = \frac{16 x^{12}}{81 y^8} \][/tex]

Thus, the simplified result of [tex]\(\left( \frac{2 x^3}{3 y^2} \right)^4\)[/tex] is:

[tex]\[ \frac{16 x^{12}}{81 y^8} \][/tex]