Select the correct answer from each drop-down menu.

The function [tex]f[/tex] is given by the table of values as shown below.

[tex]\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x) & 13 & 19 & 37 & 91 & 253 \\
\hline
\end{array}
\][/tex]

Use the given table to complete the statements.

1. The parent function of the function represented in the table is [tex]$\square$[/tex]
2. If function [tex]f[/tex] was translated down 4 units, the [tex]$\square$[/tex] -values would be [tex]$\square$[/tex]
3. A point in the table for the transformed function would be [tex]$\square$[/tex]



Answer :

Let's analyze the given information and break down the steps to complete the statements.

Step 1: Identify the Parent Function
The given values for [tex]\( f(x) \)[/tex] suggest rapid growth which is characteristic of an exponential function. Therefore, the parent function of the function represented in the table is:
[tex]\[ \text{exponential} \][/tex]

Step 2: Translate the Function Down
To translate the function [tex]\( f \)[/tex] down by 4 units, subtract 4 from each [tex]\( f(x) \)[/tex].

Given the original [tex]\( f(x) \)[/tex] values:
[tex]\[ f(1) = 13, \quad f(2) = 19, \quad f(3) = 37, \quad f(4) = 91, \quad f(5) = 253 \][/tex]

Translating these down by 4 units:
[tex]\[ f(1) - 4 = 9, \quad f(2) - 4 = 15, \quad f(3) - 4 = 33, \quad f(4) - 4 = 87, \quad f(5) - 4 = 249 \][/tex]

So, the [tex]\( y \)[/tex]-values (f(x) values) would be:
[tex]\[ 9, 15, 33, 87, 249 \][/tex]

Step 3: Identify a Point in the Transformed Function
Select a specific point in the table for the transformed function for a given [tex]\( x \)[/tex] value.

For [tex]\( x = 3 \)[/tex]:
The transformed [tex]\( f(x) \)[/tex] value is:
[tex]\[ f(3) = 33 \][/tex]

Therefore, a point in the table for the transformed function would be:
[tex]\[ (3, 33) \][/tex]

Summary of the Solutions:
1. The parent function of the function represented in the table is:
[tex]\[ \text{exponential} \][/tex]

2. If function [tex]\( f \)[/tex] was translated down 4 units, the [tex]\( y \)[/tex]-values would be:
[tex]\[ 9, 15, 33, 87, 249 \][/tex]

3. A point in the table for the transformed function would be:
[tex]\[ (3, 33) \][/tex]

Now, completing the statements in the problem:

The parent function of the function represented in the table is [tex]\(\boxed{\text{exponential}}\)[/tex]

If function [tex]\( f \)[/tex] was translated down 4 units, the [tex]\(\boxed{y}\)[/tex]-values would be [tex]\(\boxed{9, 15, 33, 87, 249}\)[/tex]

A point in the table for the transformed function would be [tex]\(\boxed{(3, 33)}\)[/tex]