Answer :
Let's solve the problem step by step:
### a. Fill out the missing values in the table
We are given that there are four possible outcomes for the points you can get after one spin, along with their associated probabilities:
- Landing on the blue sector gives 3 points.
- Landing on a yellow sector gives 1 point.
- Landing on a purple sector gives 0 points.
- Landing on a red sector gives -1 point.
Given that there are seven sectors in total:
- One sector is blue, so the probability of landing on blue (3 points) is [tex]\( \frac{1}{7} \)[/tex].
- Two sectors are yellow, so the probability of landing on yellow (1 point) is [tex]\( \frac{2}{7} \)[/tex].
- Two sectors are purple, so the probability of landing on purple (0 points) is [tex]\( \frac{2}{7} \)[/tex].
- Two sectors are red, so the probability of landing on red (-1 point) is [tex]\( \frac{2}{7} \)[/tex].
We can place these values into a table:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x_{i}$ & 3 & 1 & 0 & -1 \\ \hline $P(x_{i})$ & \frac{1}{7} & \frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \hline \end{tabular} \][/tex]
### b. Calculate the expected value
The expected value [tex]\( E(X) \)[/tex] is calculated using the formula:
[tex]\[ E(X) = \sum_{i} x_{i} \cdot P(x_{i}) \][/tex]
Substituting the values from the table into the formula:
[tex]\[ E(X) = 3 \cdot \frac{1}{7} + 1 \cdot \frac{2}{7} + 0 \cdot \frac{2}{7} + (-1) \cdot \frac{2}{7} \][/tex]
Calculating step-by-step:
[tex]\[ E(X) = \frac{3}{7} + \frac{2}{7} + 0 + \frac{-2}{7} \][/tex]
[tex]\[ E(X) = \frac{3}{7} + \frac{2}{7} - \frac{2}{7} \][/tex]
[tex]\[ E(X) = \frac{3}{7} \][/tex]
Thus, the expected value is:
[tex]\[ E(X) = 0.42857142857142855 \][/tex]
So, the step-by-step solution to the problem is:
### Solution:
a. The filled-out table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x_{i}$ & 3 & 1 & 0 & -1 \\ \hline $P(x_{i})$ & \frac{1}{7} & \frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \hline \end{tabular} \][/tex]
b. The expected value if you take one spin is:
[tex]\[ 0.42857142857142855 \][/tex]
### a. Fill out the missing values in the table
We are given that there are four possible outcomes for the points you can get after one spin, along with their associated probabilities:
- Landing on the blue sector gives 3 points.
- Landing on a yellow sector gives 1 point.
- Landing on a purple sector gives 0 points.
- Landing on a red sector gives -1 point.
Given that there are seven sectors in total:
- One sector is blue, so the probability of landing on blue (3 points) is [tex]\( \frac{1}{7} \)[/tex].
- Two sectors are yellow, so the probability of landing on yellow (1 point) is [tex]\( \frac{2}{7} \)[/tex].
- Two sectors are purple, so the probability of landing on purple (0 points) is [tex]\( \frac{2}{7} \)[/tex].
- Two sectors are red, so the probability of landing on red (-1 point) is [tex]\( \frac{2}{7} \)[/tex].
We can place these values into a table:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x_{i}$ & 3 & 1 & 0 & -1 \\ \hline $P(x_{i})$ & \frac{1}{7} & \frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \hline \end{tabular} \][/tex]
### b. Calculate the expected value
The expected value [tex]\( E(X) \)[/tex] is calculated using the formula:
[tex]\[ E(X) = \sum_{i} x_{i} \cdot P(x_{i}) \][/tex]
Substituting the values from the table into the formula:
[tex]\[ E(X) = 3 \cdot \frac{1}{7} + 1 \cdot \frac{2}{7} + 0 \cdot \frac{2}{7} + (-1) \cdot \frac{2}{7} \][/tex]
Calculating step-by-step:
[tex]\[ E(X) = \frac{3}{7} + \frac{2}{7} + 0 + \frac{-2}{7} \][/tex]
[tex]\[ E(X) = \frac{3}{7} + \frac{2}{7} - \frac{2}{7} \][/tex]
[tex]\[ E(X) = \frac{3}{7} \][/tex]
Thus, the expected value is:
[tex]\[ E(X) = 0.42857142857142855 \][/tex]
So, the step-by-step solution to the problem is:
### Solution:
a. The filled-out table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline $x_{i}$ & 3 & 1 & 0 & -1 \\ \hline $P(x_{i})$ & \frac{1}{7} & \frac{2}{7} & \frac{2}{7} & \frac{2}{7} \\ \hline \end{tabular} \][/tex]
b. The expected value if you take one spin is:
[tex]\[ 0.42857142857142855 \][/tex]