Consider the following.
g(x) = 6e9.5x; h(x) = 6(9.5x)

(a) Write the product function.

(b) Write the rate-of-change function.



Answer :

A

Let's address each part step by step.

### (a) Write the product function

The product function is the product of \( g(x) \) and \( h(x) \). Given:

\[ g(x) = 6e^{9.5x} \]

\[ h(x) = 6(9.5x) \]

The product function \( f(x) \) is:

\[ f(x) = g(x) \cdot h(x) \]

Substitute \( g(x) \) and \( h(x) \):

\[ f(x) = (6e^{9.5x}) \cdot (6 \cdot 9.5x) \]

Simplify the expression:

\[ f(x) = 36 \cdot 9.5 \cdot x \cdot e^{9.5x} \]

\[ f(x) = 342x e^{9.5x} \]

### (b) Write the rate-of-change function

To find the rate-of-change function, we need to find the derivative of \( f(x) = 342x e^{9.5x} \). We'll use the product rule, which states that if \( f(x) = u(x)v(x) \), then \( f'(x) = u'(x)v(x) + u(x)v'(x) \).

Let \( u(x) = 342x \) and \( v(x) = e^{9.5x} \).

1. Compute \( u'(x) \):

\[ u(x) = 342x \]

\[ u'(x) = 342 \]

2. Compute \( v'(x) \):

\[ v(x) = e^{9.5x} \]

\[ v'(x) = 9.5e^{9.5x} \]

Now apply the product rule:

\[ f'(x) = u'(x)v(x) + u(x)v'(x) \]

Substitute \( u(x) \), \( u'(x) \), \( v(x) \), and \( v'(x) \):

\[ f'(x) = 342 \cdot e^{9.5x} + 342x \cdot 9.5e^{9.5x} \]

Factor out \( 342e^{9.5x} \):

\[ f'(x) = 342e^{9.5x} (1 + 9.5x) \]

Thus, the rate-of-change function is:

\[ f'(x) = 342e^{9.5x} (1 + 9.5x) \]