Explain how to solve [tex]\(4^{x+3}=7\)[/tex] using the change of base formula [tex]\(\log_b y=\frac{\log y}{\log b}\)[/tex]. Include the solution for [tex]\(x\)[/tex] in your answer. Round your answer to the nearest thousandth.

1. Take the logarithm of both sides:
[tex]\[\log(4^{x+3}) = \log(7)\][/tex]

2. Use the power rule of logarithms:
[tex]\[(x+3) \log(4) = \log(7)\][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[x+3 = \frac{\log(7)}{\log(4)}\][/tex]
[tex]\[x = \frac{\log(7)}{\log(4)} - 3\][/tex]

4. Substitute the values of the logarithms and calculate:
[tex]\[x = \frac{\log(7)}{\log(4)} - 3 \approx \frac{0.8451}{0.6021} - 3\][/tex]
[tex]\[x \approx 1.403 - 3\][/tex]
[tex]\[x \approx -1.597\][/tex]

So, [tex]\(x \approx -1.597\)[/tex].



Answer :

To solve the equation [tex]\( 4^{x+3} = 7 \)[/tex] using logarithms, we will proceed step-by-step to isolate [tex]\( x \)[/tex]. The change of base formula for logarithms will be helpful in this process:

1. Apply logarithms to both sides:

We can take the common logarithm (base 10) of both sides of the equation:
[tex]\[ \log(4^{x+3}) = \log(7) \][/tex]

2. Use the properties of logarithms:

The power rule for logarithms states that [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]. Using this property, we can rewrite the left-hand side of the equation:
[tex]\[ (x + 3) \cdot \log(4) = \log(7) \][/tex]

3. Isolate [tex]\( x + 3 \)[/tex]:

To solve for [tex]\( x + 3 \)[/tex], we need to isolate it by dividing both sides of the equation by [tex]\( \log(4) \)[/tex]:
[tex]\[ x + 3 = \frac{\log(7)}{\log(4)} \][/tex]

4. Solve for [tex]\( x \)[/tex]:

Subtract 3 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(7)}{\log(4)} - 3 \][/tex]

5. Calculate the values of the logarithms:

Given that:
[tex]\[ \log(7) \approx 0.8450980400142567 \quad \text{and} \quad \log(4) \approx 0.6020599913279623 \][/tex]

6. Perform the division and subtraction:

Using these values, we calculate:
[tex]\[ \frac{0.8450980400142567}{0.6020599913279623} \approx 1.403677461028802 \][/tex]
[tex]\[ x = 1.403677461028802 - 3 \approx -1.596322538971198 \][/tex]

7. Round the result:

Finally, rounding [tex]\( x \)[/tex] to the nearest thousandth, we get:
[tex]\[ x \approx -1.596 \][/tex]

Thus, the solution for [tex]\( x \)[/tex] is approximately [tex]\(\boxed{-1.596}\)[/tex].