Look at this table:

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline -2 & 24 \\
\hline -1 & 17 \\
\hline 0 & 10 \\
\hline 1 & 3 \\
\hline 2 & -4 \\
\hline
\end{tabular}

Write a linear [tex]$(y = mx + b)$[/tex], quadratic [tex]$\left(y = ax^2 + bx + c\right)$[/tex], or exponential [tex]$\left(y = a(b)^x\right)$[/tex] function that models the data.

[tex]\[ y = \][/tex]



Answer :

To find a function that models the given data, let's examine the values in the table. The table provides pairs of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 24 \\ \hline -1 & 17 \\ \hline 0 & 10 \\ \hline 1 & 3 \\ \hline 2 & -4 \\ \hline \end{array} \][/tex]

We aim to find a quadratic function of the form [tex]\( y = ax^2 + bx + c \)[/tex] that fits these data points.

After analyzing the data and fitting it to a quadratic function, we obtain the coefficients:

[tex]\[ a = -2.8353889606431945 \times 10^{-15}, \quad b = -7.000000000000002, \quad c = 10.000000000000007 \][/tex]

Thus, the quadratic function that models the data is:

[tex]\[ y = -2.8353889606431945 \times 10^{-15} x^2 - 7.000000000000002 x + 10.000000000000007 \][/tex]

To simplify, note that [tex]\( -2.8353889606431945 \times 10^{-15} \)[/tex] is very close to zero, so it doesn't significantly affect the function in a practical sense. Therefore, the quadratic function simplifies to approximately:

[tex]\[ y = -7x + 10 \][/tex]

Hence, the linear function [tex]\(y = mx + b\)[/tex] is:

[tex]\[ y = -7x + 10 \][/tex]

But strictly following the coefficients found, the exact quadratic function is:

[tex]\[ y = -2.8353889606431945 \times 10^{-15} x^2 - 7x + 10 \][/tex]

However, for practical purposes, we often use the simplified form:

[tex]\[ y = -7x + 10 \][/tex]