Choose the correct option regarding the number of particles associated with one mole of a substance.

A) [tex]6.03 \times 10^{23}[/tex]
B) [tex]6.02 \times 10^{-23}[/tex]
C) [tex]6.01 \times 10^{-19}[/tex]
D) [tex]6.02 \times 10^{23}[/tex]



Answer :

To determine the correct option regarding the number of particles associated with one mole of a substance, we need to refer to a fundamental constant in chemistry known as Avogadro's number.

Step-by-Step Solution:

1. Understand Avogadro's Number:
Avogadro's number is a constant that defines the number of particles (atoms, molecules, ions, etc.) in one mole of a substance. This value is an essential concept in chemistry for converting between atomic scale measurements and macroscopic scale measurements.

2. Recall the Value of Avogadro's Number:
The value of Avogadro's number is approximately [tex]\(6.022 \times 10^{23}\)[/tex]. This means that one mole of any substance contains [tex]\(6.022 \times 10^{23}\)[/tex] particles.

3. Analyze the Given Options:
We need to choose the option that closely matches the value of Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex]:

- [tex]\(A) 6.03 \times 10^{23}\)[/tex]
- [tex]\(B) 6.02 \times 10^{-23}\)[/tex]
- [tex]\(C) 6.01 \times 10^{-19}\)[/tex]
- [tex]\(D) 6.02 \times 10^{23}\)[/tex]

4. Compare the Options with Avogadro's Number:
- Option A ([tex]\(6.03 \times 10^{23}\)[/tex]) is close but not exactly the value of Avogadro's number.
- Option B ([tex]\(6.02 \times 10^{-23}\)[/tex]) has the correct coefficient but incorrect exponent. The exponent should be [tex]\(23\)[/tex] instead of [tex]\(-23\)[/tex].
- Option C ([tex]\(6.01 \times 10^{-19}\)[/tex]) has incorrect coefficient and incorrect exponent.
- Option D ([tex]\(6.02 \times 10^{23}\)[/tex]) matches the value of Avogadro's number closely.

5. Choose the Correct Option:
From the options given, the one that closely matches [tex]\(6.022 \times 10^{23}\)[/tex] is [tex]\(D) 6.02 \times 10^{23}\)[/tex].

Therefore, the correct option is [tex]\(D) 6.02 \times 10^{23}\)[/tex].