Look at this table:
\begin{tabular}{|c|c|}
\hline[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 0 & -5 \\
\hline 1 & -11 \\
\hline 2 & -17 \\
\hline 3 & -23 \\
\hline 4 & -29 \\
\hline
\end{tabular}

Write a linear [tex]\((y = mx + b)\)[/tex], quadratic [tex]\(\left(y = ax^2\right)\)[/tex], or exponential [tex]\(\left(y = a(b)^x\right)\)[/tex] function that models the data.

[tex]\[ y = \][/tex]

[tex]\[ \square \][/tex]



Answer :

To find the best function that models the given data points [tex]\((x, y)\)[/tex], we will look at the possibility of a linear function of the form [tex]\(y = mx + b\)[/tex].

Given data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -5 \\ \hline 1 & -11 \\ \hline 2 & -17 \\ \hline 3 & -23 \\ \hline 4 & -29 \\ \hline \end{array} \][/tex]

We note the [tex]\(y\)[/tex] values decrease as [tex]\(x\)[/tex] increases, suggesting a possible linear relationship. A linear function has the form:

[tex]\[ y = mx + b \][/tex]

Step 1: Calculate the slope [tex]\(m\)[/tex]
[tex]\[ m = \frac{\Delta y}{\Delta x} \][/tex]

Choose two points to find the slope, for instance, using [tex]\((0, -5)\)[/tex] and [tex]\((4, -29)\)[/tex]:

[tex]\[ m = \frac{-29 - (-5)}{4 - 0} = \frac{-29 + 5}{4} = \frac{-24}{4} = -6 \][/tex]

Step 2: Calculate the intercept [tex]\(b\)[/tex]

To find [tex]\(b\)[/tex], we can use the equation of the line and one of the points, say [tex]\((0, -5)\)[/tex]:

[tex]\[ -5 = -6(0) + b \implies b = -5 \][/tex]

Thus, the linear function that models the data is:

[tex]\[ y = -6x - 5 \][/tex]

Conclusion:
The best function that fits the given data points is a linear function:

[tex]\[ y = -6x - 5 \][/tex]