How long is the arc intersected by a central angle of [tex]\frac{5 \pi}{3}[/tex] radians in a circle with a radius of 2 ft? Round your answer to the nearest tenth. Use 3.14 for [tex]\pi[/tex].

A. 2.6 ft
B. 7.0 ft
C. 10.5 ft
D. 31.4 ft



Answer :

To determine the arc length intersected by a central angle of [tex]\(\frac{5 \pi}{3}\)[/tex] radians in a circle with a radius of 2 feet, we follow these steps:

1. Convert the angle in radians to a numerical value using [tex]\(\pi \approx 3.14\)[/tex]:
[tex]\[ \frac{5 \pi}{3} \approx \frac{5 \times 3.14}{3} \][/tex]

2. Calculate the numerical value of the angle:
[tex]\[ \frac{5 \times 3.14}{3} = \frac{15.7}{3} = 5.233333333333333 \][/tex]

3. Use the formula for the arc length:
[tex]\[ \text{Arc length} = \text{Angle in radians} \times \text{Radius} \][/tex]

4. Substitute the angle in radians and radius into the formula:
[tex]\[ \text{Arc length} = 5.233333333333333 \times 2 = 10.466666666666667 \][/tex]

5. Round the result to the nearest tenth:
[tex]\[ 10.466666666666667 \approx 10.5 \][/tex]

Therefore, the length of the arc intersected by a central angle of [tex]\(\frac{5 \pi}{3}\)[/tex] radians in a circle with a radius of 2 feet, rounded to the nearest tenth, is [tex]\(10.5\)[/tex] feet.

The correct answer is:
10.5 ft.