To find the period of a wave, we need to use the relationship between frequency ([tex]\(f\)[/tex]) and period ([tex]\(T\)[/tex]). The period is the reciprocal of the frequency, given by the formula:
[tex]\[ T = \frac{1}{f} \][/tex]
Given:
[tex]\[ f = 1.85 \times 10^2 \text{ hertz} \][/tex]
Now, we compute the period [tex]\(T\)[/tex]:
[tex]\[ T = \frac{1}{1.85 \times 10^2} \][/tex]
This calculates to approximately:
[tex]\[ T \approx 0.005405405405405406 \text{ seconds} \][/tex]
We can express this result more succinctly in scientific notation:
[tex]\[ T \approx 5.40 \times 10^{-3} \text{ seconds} \][/tex]
Thus, the correct answer is:
A. [tex]\( 5.40 \times 10^{-3} \)[/tex] seconds