The frequency of the musical note [tex]F_3[/tex] is [tex]1.85 \times 10^2[/tex] hertz. What is its period?

A. [tex]5.40 \times 10^{-3}[/tex] seconds
B. [tex]1.05 \times 10^{-3}[/tex] seconds
C. [tex]3.09 \times 10^{-3}[/tex] seconds
D. [tex]5.31 \times 10^{-1}[/tex] seconds



Answer :

To find the period of a wave, we need to use the relationship between frequency ([tex]\(f\)[/tex]) and period ([tex]\(T\)[/tex]). The period is the reciprocal of the frequency, given by the formula:

[tex]\[ T = \frac{1}{f} \][/tex]

Given:
[tex]\[ f = 1.85 \times 10^2 \text{ hertz} \][/tex]

Now, we compute the period [tex]\(T\)[/tex]:

[tex]\[ T = \frac{1}{1.85 \times 10^2} \][/tex]

This calculates to approximately:

[tex]\[ T \approx 0.005405405405405406 \text{ seconds} \][/tex]

We can express this result more succinctly in scientific notation:

[tex]\[ T \approx 5.40 \times 10^{-3} \text{ seconds} \][/tex]

Thus, the correct answer is:

A. [tex]\( 5.40 \times 10^{-3} \)[/tex] seconds