A toy tractor sold for \[tex]$212 in 1980 and was sold again in 1990 for \$[/tex]418. Assume that the growth in the value [tex]\(V\)[/tex] of the collector's item was exponential.

a) Find the value [tex]\(k\)[/tex] of the exponential growth rate. Assume [tex]\(V_{0} = 212\)[/tex].

[tex]\[ k = 0.008 \][/tex]

(Round to the nearest thousandth.)

b) Find the exponential growth function in terms of [tex]\(t\)[/tex], where [tex]\(t\)[/tex] is the number of years since 1980.

[tex]\[ V(t) = \][/tex]



Answer :

Sure, let's solve this step-by-step.

### a) Finding the Exponential Growth Rate [tex]\( k \)[/tex]

Given:
- Initial value in 1980, [tex]\( V_0 = 212 \)[/tex]
- Value in 1990, [tex]\( V_{10} = 418 \)[/tex]
- Time period, [tex]\( t = 10 \)[/tex] years

We are assuming that the growth is exponential. The formula for exponential growth is:
[tex]\[ V(t) = V_0 e^{kt} \][/tex]

In this problem, we want to find the growth rate [tex]\( k \)[/tex].

First, we use the values given to form the equation:
[tex]\[ 418 = 212 e^{10k} \][/tex]

To solve for [tex]\( k \)[/tex], we need to isolate [tex]\( k \)[/tex]:

1. Divide both sides of the equation by 212:
[tex]\[ \frac{418}{212} = e^{10k} \][/tex]

2. Simplify the fraction on the left:
[tex]\[ 1.9717 \approx e^{10k} \][/tex]

3. To get rid of the exponential, take the natural logarithm (ln) of both sides:
[tex]\[ \ln (1.9717) = \ln (e^{10k}) \][/tex]

4. Apply the property of logarithms [tex]\(\ln (e^x) = x\)[/tex]:
[tex]\[ \ln (1.9717) = 10k \][/tex]

5. Solve for [tex]\( k \)[/tex] by dividing both sides by 10:
[tex]\[ k = \frac{\ln (1.9717)}{10} \][/tex]

Using a calculator to find the natural logarithm:
[tex]\[ k \approx \frac{0.6789}{10} = 0.0679 \][/tex]

Rounded to the nearest thousandth:
[tex]\[ k \approx 0.068 \][/tex]

### b) Finding the Exponential Growth Function [tex]\( V(t) \)[/tex]

Now that we have the growth rate [tex]\( k \approx 0.068 \)[/tex], let's find the exponential growth function:

The general form of the exponential growth function is:
[tex]\[ V(t) = V_0 e^{kt} \][/tex]

Plugging in the known values:
- [tex]\( V_0 = 212 \)[/tex]
- [tex]\( k = 0.068 \)[/tex]

Thus, the exponential growth function is:
[tex]\[ V(t) = 212 e^{0.068t} \][/tex]

Therefore, the solutions are:

1. The exponential growth rate [tex]\( k \approx 0.068 \)[/tex]
2. The exponential growth function:
[tex]\[ V(t) = 212 e^{0.068t} \][/tex]