The revenue, in thousands of dollars, that a company earns selling lawnmowers can be modeled by [tex]\(R(x)=90x-x^2\)[/tex]. The company's total profit, in thousands of dollars, after selling [tex]\(x\)[/tex] lawnmowers can be modeled by [tex]\(P(x)=-x^2+30x-200\)[/tex].

Which function represents the company's cost, in thousands of dollars, for producing lawnmowers? (Recall that profit equals revenue minus cost.)

A. [tex]\(C(x)=2x^2+60x+200\)[/tex]
B. [tex]\(C(x)=-60x^2-200\)[/tex]
C. [tex]\(C(x)=60x+200\)[/tex]
D. [tex]\(C(x)=-2x^2-60x-200\)[/tex]



Answer :

To determine which function represents the company's cost, [tex]\(C(x)\)[/tex], for producing lawnmowers, we will use the relationship between profit, revenue, and cost. The given functions are:

- Revenue: [tex]\(R(x) = 90x - x^2\)[/tex]
- Profit: [tex]\(P(x) = -x^2 + 30x - 200\)[/tex]

The relationship between these quantities is:
[tex]\[ \text{Profit} = \text{Revenue} - \text{Cost} \][/tex]

Or symbolically:
[tex]\[ P(x) = R(x) - C(x) \][/tex]

Rearranging this equation to solve for the cost function [tex]\(C(x)\)[/tex] gives:
[tex]\[ C(x) = R(x) - P(x) \][/tex]

Now, substitute the given functions [tex]\(R(x)\)[/tex] and [tex]\(P(x)\)[/tex] into this equation:
[tex]\[ C(x) = (90x - x^2) - (-x^2 + 30x - 200) \][/tex]

Simplify the expression inside the parentheses:
[tex]\[ C(x) = 90x - x^2 + x^2 - 30x + 200 \][/tex]

Combine the like terms:
[tex]\[ C(x) = (90x - 30x) + (-x^2 + x^2) + 200 \][/tex]
[tex]\[ C(x) = 60x + 200 \][/tex]

Thus, the cost function [tex]\(C(x)\)[/tex] is:
[tex]\[ C(x) = 60x + 200 \][/tex]

Therefore, the correct answer is:
C. [tex]\(C(x) = 60x + 200\)[/tex]